Halide vapor phase epitaxial (HVPE) Ga2O3 films were grown on c-plane sapphire and diamond substrates at temperatures up to 550 °C without the use of a barrier dielectric layer to protect the diamond surface. Corundum phase α-Ga2O3 was grown on the sapphire substrates, whereas the growth on diamond resulted in regions of nanocrystalline β-Ga2O3 (nc-β-Ga2O3) when oxygen was present in the HVPE reactor only during film growth. X-ray diffraction confirmed the growth of α-Ga2O3 on sapphire but failed to detect any β-Ga2O3 reflections from the films grown on diamond. These films were further characterized via Raman spectroscopy, which revealed the β-Ga2O3 phase of these films. Transmission electron microscopy demonstrated the nanocrystalline character of these films. From cathodoluminescence spectra, three emission bands, UVL′, UVL, and BL, were observed for both the α-Ga2O3/sapphire and nc-Ga2O3/diamond, and these bands were centered at approximately 3.7, 3.2, and 2.7 eV.

1.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
2.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
3.
M.
Higashiwaki
and
S.
Fujita
,
Gallium Oxide: Materials Properties, Crystal Growth, and Devices
(
Springer Nature
, Cham, Switzerland,
2020
).
4.
S.
Pearton
,
F.
Ren
, and
M.
Mastro
,
Gallium Oxide: Technology, Devices and Applications
(
Elsevier
,
New York
,
2018
).
5.
P.
Dong
,
J.
Zhang
,
Q.
Yan
,
Z.
Liu
,
P.
Ma
,
H.
Zhou
, and
Y.
Hao
,
IEEE Electron Device Lett.
43
,
765
(
2022
).
6.
J.
Zhang
 et al.,
Nat. Commun.
13
,
3900
(
2022
).
7.
A.
Bhattacharyya
 et al.,
Appl. Phys. Express
15
,
061001
(
2022
).
8.
M. H.
Wong
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
,
IEEE Electron Device Lett.
41
,
296
(
2020
).
9.
Z.
Hu
 et al.,
Appl. Phys. Lett.
113
,
122103
(
2018
).
10.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
97
,
142106
(
2010
).
11.
J. B.
Varley
,
A.
Janotti
,
C.
Franchini
, and
C. G.
Van de Walle
,
Phys. Rev. B
85
,
081109
(
2012
).
12.
Z.
Guo
 et al.,
Appl. Phys. Lett.
106
,
111909
(
2015
).
13.
J. S.
Lundh
 et al., in
Device Research Conference—Conference Digest, DRC
(
IEEE
,
New York
,
2022
).
14.
Z.
Cheng
,
L.
Yates
,
J.
Shi
,
M. J.
Tadjer
,
K. D.
Hobart
, and
S.
Graham
,
APL Mater.
7
,
031118
(
2019
).
15.
T.
Matsumae
,
Y.
Kurashima
,
H.
Umezawa
,
K.
Tanaka
,
T.
Ito
,
H.
Watanabe
, and
H.
Takagi
,
Appl. Phys. Lett.
116
,
141602
(
2020
).
16.
Y.
Xu
,
F.
Mu
,
Y.
Wang
,
D.
Chen
,
X.
Ou
, and
T.
Suga
,
Ceram. Int.
45
,
6552
(
2019
).
17.
M.
Malakoutian
 et al.,
Appl. Phys. Express
14
,
055502
(
2021
).
18.
M. R.
Karim
,
Z.
Chen
,
Z.
Feng
,
H.-L.
Huang
,
J. M.
Johnson
,
M. J.
Tadjer
,
J.
Hwang
, and
H.
Zhao
,
J. Vac. Sci. Technol. A
39
,
023411
(
2021
).
19.
Z.
Cheng
,
V. D.
Wheeler
,
T.
Bai
,
J.
Shi
,
M. J.
Tadjer
,
T.
Feygelson
,
K. D.
Hobart
,
M. S.
Goorsky
, and
S.
Graham
,
Appl. Phys. Lett.
116
,
062105
(
2020
).
20.
A. Y.
Polyakov
 et al.,
J. Appl. Phys.
129
,
185701
(
2021
).
21.
C.-H.
Lin
,
N.
Hatta
,
K.
Konishi
,
S.
Watanabe
,
A.
Kuramata
,
K.
Yagi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
114
,
032103
(
2019
).
22.
Y.
Song
 et al.,
ACS Appl. Mater. Interfaces
13
,
40817
(
2021
).
23.
Z.
Cheng
 et al.,
ACS Appl. Mater. Interfaces
12
,
44943
(
2020
).
24.
T.
Matsumae
,
Y.
Kurashima
,
H.
Takagi
,
H.
Umezawa
, and
E.
Higurashi
,
J. Appl. Phys.
130
,
085303
(
2021
).
25.
W.
Xu
 et al.,
ACS Appl. Electron. Mater.
4
,
494
(
2022
).
26.
D.
Ma
,
G.
Zhang
, and
L.
Zhang
,
J. Phys. D: Appl. Phys.
53
,
434001
(
2020
).
27.
M. E.
Liao
,
C.
Li
,
H. M.
Yu
,
E.
Rosker
,
M. J.
Tadjer
,
K. D.
Hobart
, and
M. S.
Goorsky
,
APL Mater.
7
,
022517
(
2019
).
28.
Y. N.
Palyanov
,
I. N.
Kupriyanov
, and
Y. M.
Borzdov
,
Carbon
143
,
769
(
2019
).
29.
M.
Yang
 et al.,
Nanomaterials
9
, 1576 (
2019
).
30.
R.
Moriya
,
J.
Kikawa
,
S.
Mouri
,
T.
Shinohe
,
S.
Xiao
,
H.
Miyake
, and
T.
Araki
,
Phys. Status Solidi B
259
,
2100598
(
2022
).
31.
A. Y.
Polyakov
 et al.,
APL Mater.
7
,
051103
(
2019
).
32.
M.
Yamaga
,
T.
Ishikawa
,
M.
Yoshida
,
T.
Hasegawa
,
E. G.
Villora
, and
K.
Shimamura
,
Phys. Status Solidi C
8
,
2621
(
2011
).
33.
K.
Shimamura
,
E. G.
Víllora
,
T.
Ujiie
, and
K.
Aoki
,
Appl. Phys. Lett.
92
,
201914
(
2008
).
34.
T.
Harwig
,
F.
Kellendonk
, and
S.
Slappendel
,
J. Phys. D: Chem. Solids
39
,
675
(
1978
).
35.
T.
Hidouri
,
A.
Parisini
,
S.
Dadgostar
,
J.
Jimenez
, and
R.
Fornari
,
J. Phys. D: Appl. Phys.
55
,
295103
(
2022
).
36.
K.
Goto
,
H.
Nakahata
,
H.
Murakami
, and
Y.
Kumagai
,
Appl. Phys. Lett.
117
,
222101
(
2020
).
You do not currently have access to this content.