AlN and Al2O3 multilayer films intended as moisture barriers were deposited on polyethylene naphthalate films by remote-type plasma-enhanced atomic layer deposition. The deposition temperatures for AlN and Al2O3 were 160 and 20 °C, respectively. It was assumed that the AlN and Al2O3 interface would suppress the formation of dislocations and pinholes that lead to moisture diffusion. The AlN top layer was expected to act as a water-resistant layer. The surface morphology and the crystallinity of the deposited film were investigated by atomic force microscopy (AFM) and x-ray diffraction, respectively. The gas barrier property of the multilayer film was determined by the water vapor transmission rate, which was measured as 1.3 × 10−3 g/m2/day at a temperature of 40 °C and a relative humidity (RH) of 90%. The AFM image showed that the AlN top layer remained unchanged during water vapor contact for 120 h at 40 °C and 90% RH. The applicability of the multilayer film as a moisture barrier coating for compound semiconductor devices is discussed.

1.
M.
Usman
,
A.
Hallén
,
T.
Pilvi
,
A.
Schöner
, and
M.
Leskelä
,
J. Electrochem. Soc.
158
,
H75
(
2011
).
2.
K. J.
Chen
and
S.
Huang
,
Semicond. Sci. Technol.
28
,
074015
(
2013
).
3.
M.
Bosund
,
P.
Mattila
,
A.
Aierken
,
T.
Hakkarainen
,
H.
Koskenvaara
,
M.
Sopanen
,
V. M.
Airaksinen
, and
H.
Lipsanen
,
Appl. Surf. Sci.
256
,
7434
(
2010
).
4.
M.
Usman
,
T.
Pilvi
,
M.
Leskelä
,
A.
Schöner
, and
A.
Hallén
,
Mater. Sci. Forum
679–680
,
441
(
2011
).
5.
J.
Kotani
,
M.
Tajima
,
S.
Kasai
, and
T.
Hashizume
,
Appl. Phys. Lett.
91
,
093501
(
2007
).
6.
H.
Hasegawa
,
T.
Inagaki
,
S.
Ootomo
, and
T.
Hashizume
,
J. Vac. Sci. Technol. B
21
,
1844
(
2003
).
7.
D. G.
Zhao
,
J. J.
Zhu
,
D. S.
Jiang
,
H.
Yang
,
J. W.
Liang
,
X. Y.
Li
, and
H. M.
Gong
,
J. Cryst. Growth
289
,
72
(
2006
).
8.
D. M.
Hoffman
,
S.
Prakash Rangarajan
,
S. D.
Athavale
,
D. J.
Economou
,
J. R.
Liu
,
Z.
Zheng
, and
W. K.
Chu
,
J. Vac. Sci. Technol. A
14
,
306
(
1996
).
9.
M. E.
Bartram
,
T. A.
Michalske
,
J. W.
Rogers
, Jr
., and R. T. Paine,
Chem. Mater.
5
,
1424
(
1993
).
10.
Y. C.
Jung
 et al,
Materials
13
,
3387
(
2020
).
11.
M.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
,
Phys. Status Solidi A
209
,
266
(
2012
).
12.
K.
Saito
,
K.
Yoshida
,
M.
Miura
,
K.
Kanomata
,
A.
Ahmmad
,
S.
Kubota
, and
F.
Hirose
,
IEICE Trans. Electron.
E105-C
,
596
(
2022
).
13.
D. D.
Fischer
,
M.
Knaut
,
J.
Reif
,
F.
Nehm
,
M.
Albert
, and
J. W.
Bartha
,
J. Vac. Sci. Technol. A
38
,
022419
(
2020
).
14.
M. D.
Groner
,
S. M.
George
,
R. S.
McLean
, and
P. F.
Carcia
,
Appl. Phys. Lett.
88
,
051907
(
2006
).
15.
K.
Yoshida
,
K.
Saito
,
K.
Sogai
,
M.
Miura
,
K.
Kanomata
,
B.
Ahmmad
,
S.
Kubota
, and
F.
Hirose
,
IEICE Trans. Electron.
E104.C
,
363
(
2021
).
16.
J. H.
Kwon
,
Y.
Jeon
,
S.
Choi
,
J. W.
Park
,
H.
Kim
, and
K. C.
Choi
,
ACS Appl. Mater. Interfaces
9
,
43983
(
2017
).
17.
Y.
Nakano
,
T.
Yanase
,
T.
Nagahama
,
H.
Yoshida
, and
T.
Shimada
,
Sci. Rep.
6
,
35408
(
2016
).
18.
L.
Tian
 et al,
Surf. Coat. Technol.
347
,
181
(
2018
).
19.
A. R.
Cho
,
E. H.
Kim
,
S. Y.
Park
, and
L. S.
Park
,
Synth. Met.
193
,
77
(
2014
).
20.
A.
Gasonoo
,
J. H.
Lee
,
Y. J.
Lim
,
S. H.
Lee
,
Y.
Choi
, and
J. H.
Lee
,
Electron. Mater. Lett.
16
,
466
(
2020
).
You do not currently have access to this content.