Area-selective atomic layer deposition (ALD) is of interest for applications in self-aligned processing of nanoelectronics. Selective deposition is generally enabled by functionalization of the area where no growth is desired with inhibitor molecules. The packing of these inhibitor molecules, in terms of molecule arrangement and surface density, plays a vital role in deactivating the surface by blocking the precursor adsorption. In this work, we performed random sequential adsorption (RSA) simulations to investigate the packing of small molecule inhibitors (SMIs) on a surface in order to predict how effective the SMI blocks precursor adsorption. These simulations provide insight into how the packing of inhibitor molecules depends on the molecule size, molecule shape, and their ability to diffuse over the surface. Based on the RSA simulations, a statistical method was developed for analyzing the sizes of the gaps in between the adsorbed inhibitor molecules, serving as a quantitative parameter on the effectiveness of precursor blocking. This method was validated by experimental studies using several alcohol molecules as SMIs in an area-selective deposition process for SiO2. It is demonstrated that RSA simulations provide an insightful and straightforward method for screening SMIs in terms of their potential for area-selective ALD.

1.
I. L.
Markov
,
Nature
512
,
147
(
2014
).
2.
C. A.
Mack
,
IEEE Trans. Semicond. Manuf.
24
,
202
(
2011
).
3.
X.
Huang
 et al,
IEEE Trans. Electron Devices
48
,
880
(
2001
).
4.
M.
De Marchi
,
D.
Sacchetto
,
J.
Zhang
,
S.
Frache
,
P.-E.
Gaillardon
,
Y.
Leblebici
, and
G.
De Micheli
,
IEEE Trans. Nanotechnol.
13
,
1029
(
2014
).
5.
G. S.
May
and
S. M.
Sze
,
Fundamentals of Semiconductor Fabrication
(
Wiley
,
New York
,
2004
).
6.
G. S.
May
and
C. J.
Spanos
,
Fundamentals of Semiconductor Manufacturing and Process Control
(
John Wiley & Sons, Inc.
,
Hoboken, NJ, USA
,
2006
).
7.
R.
Clark
,
K.
Tapily
,
K.-H.
Yu
,
T.
Hakamata
,
S.
Consiglio
,
D.
O’Meara
,
C.
Wajda
,
J.
Smith
, and
G.
Leusink
,
APL Mater.
6
,
058203
(
2018
).
8.
E.
Buitrago
,
M.
Meeuwissen
,
O.
Yildirim
,
R.
Custers
,
R.
Hoefnagels
,
G.
Rispens
,
M.
Vockenhuber
,
I.
Mochi
,
R.
Fallica
,
Z.
Tasdemir
, and
Y.
Ekinci
, “
State-of-the-art EUV materials and processes for the 7nm node and beyond
,” in
Proc. SPIE Conference Series
, edited by
E. M.
Panning
and
K. A.
Goldberg
(
SPIE Advanced Lithography
,
San Jose
,
2017
), Vol.
10143
, p.
101430T
, 8 pp.
9.
J.
Mulkens
,
M.
Hanna
,
B.
Slachter
,
W.
Tel
,
M.
Kubis
,
M.
Maslow
,
C.
Spence
, and
V.
Timoshkov
, “
Patterning control strategies for minimum edge placement error in logic devices
,” in
Proc. of SPIE
, edited by
M. I.
Sanchez
and
V. A.
Ukraintsev
(
SPIE Advanced Lithography
,
San Jose
,
2017
), Vol.
10145
, p.
1014505
, 13 pp.
10.
P.
Gupta
,
A. B.
Kahng
,
S. V.
Muddu
, and
S.
Nakagawa
, “
Modeling edge placement error distribution in standard cell library
,” in
Proc. SPIE
, edited by
A. K. K.
Wong
and
V. K.
Singh
(
SPIE 31st International Symposium on Advanced Lithography
,
San Jose
,
2006
), Vol.
6156
, p.
61560S
, 12 pp.
11.
J.
Mulkens
,
M.
Hanna
,
H.
Wei
,
V.
Vaenkatesan
,
H.
Megens
, and
D.
Slotboom
, “Overlay and edge placement control strategies for the 7nm node using EUV and ArF lithography,” in
Advanced Lithography
, edited by
O. R.
Wood
and
E. M.
Panning
(
SPIE Advanced Lithography
,
San Jose
,
2015
), p.
94221Q
.
12.
K.
Mistry
 et al,
IEEE Int. Electron Devices Meet.
247
,
2007
(
2007
).
13.
H.
Kim
,
H.-B.-R.
Lee
, and
W.-J.
Maeng
,
Thin Solid Films
517
,
2563
(
2009
).
14.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
15.
V.
Cremers
,
R. L.
Puurunen
, and
J.
Dendooven
,
Appl. Phys. Rev.
6
,
021302
(
2019
).
16.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
17.
R. L.
Puurunen
,
J. Appl. Phys.
98
,
016102
(
2005
).
18.
M.
Leskelä
and
M.
Ritala
,
Angew. Chem., Int. Ed.
42
,
5548
(
2003
).
19.
N.
Biyikli
,
A.
Haider
,
P.
Deminskyi
, and
M.
Yilmaz
, “Self-aligned nanoscale processing solutions via selective atomic layer deposition of oxide, nitride, and metallic films,” in
Low-Dimensional Materials and Devices
, edited by
N. P.
Kobayashi
,
A. A.
Talin
,
A. V.
Davydov
, and
M. S.
Islam
(
SPIE
,
San Jose
,
2017
),
20
pp.
20.
F.
Lazzarino
,
N.
Mohanty
,
Y.
Feurprier
,
L.
Huli
,
V.
Luong
,
M.
Demand
,
S.
Decoster
,
V.
Vega Gonzalez
,
J.
Ryckaert
,
R. R. H.
Kim
,
A.
Mallik
,
P.
Leray
,
C.
Wilson
,
J.
Boemmels
,
K.
Kumar
,
K.
Nafus
,
A.
DeVilliers
,
J.
Smith
,
C.
Fonseca
,
J.
Bannister
,
S.
Scheer
,
Z.
Tokei
,
D.
Piumi
, and
K.
Barla
, “
Self-aligned block technology: a step toward further scaling
,” in
Proc. SPIE
, edited by
S. U.
Engelmann
and
R. S.
Wise
(
SPIE Advanced Lithography
,
San Jose
,
2017
), p.
1014908
.
21.
A.
Mameli
,
Y.
Kuang
,
M.
Aghaee
,
C. K.
Ande
,
B.
Karasulu
,
M.
Creatore
,
A. J. M.
Mackus
,
W. M. M.
Kessels
, and
F.
Roozeboom
,
Chem. Mater.
29
,
921
(
2017
).
22.
A. J. M.
MacKus
,
J. J. L.
Mulders
,
M. C. M.
Van De Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
107
,
116102
(
2010
).
23.
A.
Haider
,
P.
Deminskyi
,
T. M.
Khan
,
H.
Eren
, and
N.
Biyikli
,
J. Phys. Chem. C
120
,
26393
(
2016
).
24.
B.
Kalanyan
,
P. C.
Lemaire
,
S. E.
Atanasov
,
M. J.
Ritz
, and
G. N.
Parsons
,
Chem. Mater.
28
,
117
(
2016
).
25.
S.
McDonnell
 et al,
J. Phys. Chem. C
117
,
20250
(
2013
).
26.
E.
Färm
,
M.
Vehkamäki
,
M.
Ritala
, and
M.
Leskelä
,
Semicond. Sci. Technol.
27
,
074004
(
2012
).
27.
A. J. M.
Mackus
,
M. J. M.
Merkx
, and
W. M. M.
Kessels
,
Chem. Mater.
31
,
2
(
2019
).
28.
E. K.
Seo
,
J. W.
Lee
,
H. M.
Sung-Suh
, and
M. M.
Sung
,
Chem. Mater.
16
,
1878
(
2004
).
29.
F. S.
Minaye Hashemi
,
B. R.
Birchansky
, and
S. F.
Bent
,
ACS Appl. Mater. Interfaces
8
,
33264
(
2016
).
30.
M. D.
Sampson
,
J. D.
Emery
,
M. J.
Pellin
, and
A. B. F.
Martinson
,
ACS Appl. Mater. Interfaces
9
,
33429
(
2017
).
31.
E.
Färm
,
M.
Kemell
,
M.
Ritala
, and
M.
Leskelä
,
Thin Solid Films
517
,
972
(
2008
).
32.
H.-B.-R.
Lee
,
M. N.
Mullings
,
X.
Jiang
,
B. M.
Clemens
, and
S. F.
Bent
,
Chem. Mater.
24
,
4051
(
2012
).
33.
L.
Lecordier
,
S.
Herregods
, and
S.
Armini
,
J. Vac. Sci. Technol. A
36
,
031605
(
2018
).
34.
J.
Hong
,
D. W.
Porter
,
R.
Sreenivasan
,
P. C.
McIntyre
, and
S. F.
Bent
,
Langmuir
23
,
1160
(
2007
).
35.
J.
Yarbrough
,
A. B.
Shearer
, and
S. F.
Bent
,
J. Vac. Sci. Technol., A
39
,
021002
(
2021
).
36.
G. N.
Parsons
and
R. D.
Clark
,
Chem. Mater.
32
,
4920
(
2020
).
37.
M. J. M.
Merkx
,
T. E.
Sandoval
,
D. M.
Hausmann
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
Chem. Mater.
32
,
3335
(
2020
).
38.
A.
Mameli
,
M. J. M.
Merkx
,
B.
Karasulu
,
F.
Roozeboom
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
ACS Nano
11
,
9303
(
2017
).
39.
A.
Yanguas-Gil
,
J. A.
Libera
, and
J. W.
Elam
,
Chem. Mater.
25
,
4849
(
2013
).
40.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
41.
D. R.
Boris
,
V. D.
Wheeler
,
N.
Nepal
,
S. B.
Qadri
,
S. G.
Walton
,
C.
Chip
, and
R.
Eddy
,
J. Vac. Sci. Technol. A
38
,
040801
(
2020
).
42.
M. J. M.
Merkx
,
R. G. J.
Jongen
,
A.
Mameli
,
P. C.
Lemaire
,
K.
Sharma
,
D. M.
Hausmann
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
J. Vac. Sci. Technol. A
39
,
012402
(
2021
).
43.
S.
Balasubramanyam
,
M. J. M.
Merkx
,
M. A.
Verheijen
,
W. M. M.
Kessels
,
A. J. M.
Mackus
, and
A. A.
Bol
,
ACS Mater. Lett.
2
,
511
(
2020
).
44.
M. J. M.
Merkx
,
S.
Vlaanderen
,
T.
Faraz
,
M. A.
Verheijen
,
W. M. M.
Kessels
, and
A. J. M.
MacKus
,
Chem. Mater.
32
,
7788
(
2020
).
45.
H. G.
Kim
 et al,
Chem. Mater.
32
,
8921
(
2020
).
46.
R.
Khan
 et al,
Chem. Mater.
30
,
7603
(
2018
).
47.
J.
Soethoudt
,
Y.
Tomczak
,
B.
Meynaerts
,
B. T.
Chan
, and
A.
Delabie
,
J. Phys. Chem. C
124
,
7163
(
2020
).
48.
M. J. M.
Merkx
 et al,
J. Phys. Chem. C
126
,
4845
(
2022
).
49.
T. E.
Sandoval
and
S. F.
Bent
,
J. Phys. Chem. C
121
,
25978
(
2017
).
50.
B.
Shong
,
R. Y.
Brogaard
,
T. E.
Sandoval
, and
S. F.
Bent
,
J. Phys. Chem. C
118
,
23811
(
2014
).
51.
T. E.
Sandoval
and
S. F.
Bent
,
Langmuir
33
,
8716
(
2017
).
52.
K. T.
Wong
,
S. N.
Chopra
, and
S. F.
Bent
,
J. Phys. Chem. C
116
,
12670
(
2012
).
53.
J. W.
Evans
,
Rev. Mod. Phys.
65
,
1281
(
1993
).
54.
E. L.
Hinrichsen
,
J.
Feder
, and
T.
Jøssang
,
J. Stat. Phys.
44
,
793
(
1986
).
55.
J.
Feder
,
J. Theor. Biol.
87
,
237
(
1980
).
56.
J.
Talbot
,
G.
Tarjus
,
P. R.
Van Tassel
, and
P.
Viot
,
Colloids Surf. A
165
,
287
(
2000
).
57.
M.
Schmidt
,
J. Phys.: Condens. Matter
14
,
12119
(
2002
).
58.
P. M.
Pasinetti
,
L. S.
Ramirez
,
P. M.
Centres
,
A. J.
Ramirez-Pastor
, and
G. A.
Cwilich
,
Phys. Rev. E
100
,
1
(
2019
).
59.
N. I.
Lebovka
,
N. V.
Vygornitskii
, and
Y. Y.
Tarasevich
,
Phys. Rev. E
102
,
22133
(
2020
).
60.
R. H.
Swendsen
,
Phys. Rev. A
24
,
504
(
1981
).
61.
A.
Cadilhe
,
N. A. M.
Araújo
, and
V.
Privman
,
J. Phys.: Condens. Matter
19
,
065124
(
2007
).
62.
L.
Budinski-Petković
,
I.
Lončarević
,
Z. M.
Jakšić
, and
S. B.
Vrhovac
,
J. Stat. Mech.: Theory Exp.
2016
,
053101
(
2016
).
63.
G.
Mazaleyrat
,
A.
Estève
,
L.
Jeloaica
, and
M.
Djafari-Rouhani
,
Comput. Mater. Sci.
33
,
74
(
2005
).
64.
A.
Estéve
,
Y. J.
Chabal
,
K.
Raghavachari
,
M. K.
Weldon
,
K. T.
Queeney
, and
M.
Djafari Rouhani
,
J. Appl. Phys.
90
,
6000
(
2001
).
65.
S. B. S.
Heil
,
J. L.
van Hemmen
,
C. J.
Hodson
,
N.
Singh
,
J. H.
Klootwijk
,
F.
Roozeboom
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
25
,
1357
(
2007
).
66.
G.
Dingemans
,
C. A. A.
van Helvoirt
,
D.
Pierreux
,
W.
Keuning
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
159
,
H277
(
2012
).
67.
G.
Kresse
,
J. Non-Cryst. Solids
192–193
,
222
(
1995
).
68.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
69.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
70.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
71.
Software: MedeA version 2.23
,
MedeA and Materials Design are registered trademarks of Materials Design, Inc.
,
Angel Fire
:
New Mexico
(
2019
).
72.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
73.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
74.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
75.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
76.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
77.
R.
Chen
and
S. F.
Bent
,
Chem. Mater.
18
,
3733
(
2006
).
78.
J. E.
Lennard-Jones
,
Proc. Phys. Soc.
43
,
461
(
1931
).
79.
M.
Hu
,
T. C.
Hauger
,
B. C.
Olsen
,
E. J.
Luber
, and
J. M.
Buriak
,
J. Phys. Chem. C
122
,
13803
(
2018
).
80.
I.
Levin
and
D.
Brandon
,
J. Am. Ceram. Soc.
81
,
1995
(
1998
).
81.
T.
Suzuki
,
S.
Hishita
,
K.
Oyoshi
, and
R.
Souda
,
Surf. Sci.
437
,
289
(
1999
).
82.
A.
Dalton
,
D.
Llera-Hurlburt
, and
E.
Seebauer
,
Surf. Sci.
494
,
L761
(
2001
).
83.
J.
Barth
,
Surf. Sci. Rep.
40
,
75
(
2000
).
84.
J.
Weckesser
,
J. V.
Barth
, and
K.
Kern
,
J. Chem. Phys.
110
,
5351
(
1999
).
85.
A.
Kouchi
,
K.
Furuya
,
T.
Hama
,
T.
Chigai
,
T.
Kozasa
, and
N.
Watanabe
,
Astrophys. J. Lett.
891
,
L22
(
2020
).
86.
D. A.
Arthur
,
D. L.
Meixner
,
M.
Boudart
, and
S. M.
George
,
J. Chem. Phys.
95
,
8521
(
1991
).
87.
B.
Han
 et al,
J. Phys. Chem. C
116
,
947
(
2012
).
88.
K.
Lee
and
Y.
Shim
,
RSC Adv.
10
,
16584
(
2020
).
89.
G.-Y.
Fang
,
L.-N.
Xu
,
Y.-Q.
Cao
,
L.-G.
Wang
,
D.
Wu
, and
A.-D.
Li
,
Chem. Commun.
51
,
1341
(
2015
).
90.
M. L.
O’Neill
,
H. R.
Bowen
,
A.
Derecskei-Kovacs
,
K. S.
Cuthill
,
B.
Han
, and
M.
Xiao
,
Interf. Mag.
20
,
33
(
2011
).
91.
M. A.
Mione
,
V.
Vandalon
,
A.
Mameli
,
W. M. M.
Kessels
, and
F.
Roozeboom
,
J. Phys. Chem. C
125
,
24945
(
2021
).
92.
K. V.
Wagaskar
,
R.
Late
,
A. G.
Banpurkar
,
A. V.
Limaye
, and
P. B.
Shelke
,
J. Stat. Phys.
181
,
2191
(
2020
).
93.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002096 for additional DFT results and the IR spectra showing ethanol displacement.

Supplementary Material

You do not currently have access to this content.