To enable greater control over thermal atomic layer deposition (ALD) of molybdenum disulfide (MoS2), here we report studies of the reactions of molybdenum hexafluoride (MoF6) and hydrogen sulfide (H2S) with metal oxide substrates from nucleation to few-layer films. In situ quartz crystal microbalance experiments performed at 150, 200, and 250 °C revealed temperature-dependent nucleation behavior of the MoF6 precursor, which is attributed to variations in surface hydroxyl concentration with temperature. In situ Fourier transform infrared spectroscopy coupled with ex situ x-ray photoelectron spectroscopy (XPS) indicated the presence of molybdenum oxide and molybdenum oxyfluoride species during nucleation. Density functional theory calculations additionally support the formation of these species as well as predicted metal oxide to fluoride conversion. Residual gas analysis revealed reaction by-products, and the combined experimental and computational results provided insights into proposed nucleation surface reactions. With additional ALD cycles, Fourier transform infrared spectroscopy indicated steady film growth after ∼13 cycles at 200 °C. XPS revealed that higher deposition temperatures resulted in a higher fraction of MoS2 within the films. Deposition temperature was found to play an important role in film morphology with amorphous films obtained at 200 °C and below, while layered films with vertical platelets were observed at 250 °C. These results provide an improved understanding of MoS2 nucleation, which can guide surface preparation for the deposition of few-layer films and advance MoS2 toward integration into device manufacturing.

1.
U.
Krishnan
,
M.
Kaur
,
K.
Singh
,
M.
Kumar
, and
A.
Kumar
,
Superlatt. Microstruct.
128
,
274
(
2019
).
2.
S.
Maulik
,
S.
Basu
,
K.
Kanakamedala
, and
T.
Daniels-Race
,
J. Electron. Mater.
48
,
3451
(
2019
).
3.
Y.
Kim
,
W. J.
Woo
,
D.
Kim
,
S.
Lee
,
S. M.
Chung
,
J.
Park
, and
H.
Kim
,
Adv. Mater.
33
,
2005907
(
2021
).
4.
Y. L.
Huang
 et al.,
Nat. Commun.
6
,
6298
(
2015
).
5.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
7.
T.
Tajima
,
S.
Okabe
, and
Y.
Takaguchi
,
Bull. Chem. Soc. Jpn.
93
,
745
(
2020
).
9.
A.
Jäger-Waldau
,
M. C.
Lux-Steiner
, and
E.
Bucher
,
Solid State Phenom.
37-38
,
479
(
1994
).
10.
Z.
Huang
,
T.
Zhang
,
J.
Liu
,
L.
Zhang
,
Y.
Jin
,
J.
Wang
,
K.
Jiang
,
S.
Fan
, and
Q.
Li
,
ACS Appl. Electron. Mater.
1
,
1314
(
2019
).
11.
Y.
Xue
,
Q.
Zhang
,
W.
Wang
,
H.
Cao
,
Q.
Yang
, and
L.
Fu
,
Adv. Energy Mater.
7
,
1602684
(
2017
).
12.
T.
Tang
,
T.
Zhang
,
L.
Zhao
,
B.
Zhang
,
W.
Li
,
J.
Xu
,
L.
Zhang
,
H.
Qiu
, and
Y.
Hou
,
Mater. Chem. Front.
4
,
1483
(
2020
).
13.
Q.
Yun
,
Q.
Lu
,
X.
Zhang
,
C.
Tan
, and
H.
Zhang
,
Angew. Chem. Int. Ed.
57
,
626
(
2018
).
14.
15.
J.
Jeon
,
S. K.
Jang
,
S. M.
Jeon
,
G.
Yoo
,
Y. H.
Jang
,
J.-H.
Park
, and
S.
Lee
,
Nanoscale
7
,
1688
(
2015
).
16.
A.
Tarasov
,
P. M.
Campbell
,
M. Y.
Tsai
,
Z. R.
Hesabi
,
J.
Feirer
,
S.
Graham
,
W. J.
Ready
, and
E. M.
Vogel
,
Adv. Funct. Mater.
24
,
6389
(
2014
).
17.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
,
Adv. Funct. Mater.
22
,
1385
(
2012
).
18.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
19.
D.
Zhou
,
H.
Shu
,
C.
Hu
,
L.
Jiang
,
P.
Liang
, and
X.
Chen
,
Cryst. Growth Des.
18
,
1012
(
2018
).
20.
H.
Xue
,
G.
Wu
,
B.
Zhao
,
D.
Wang
,
X.
Wu
, and
Z.
Hu
,
ACS Appl. Electron. Mater.
2
,
1925
(
2020
).
21.
V. T.
Nguyen
,
Y. C.
Kim
,
Y. H.
Ahn
,
S.
Lee
, and
J.-Y.
Park
,
Carbon
168
,
580
(
2020
).
22.
C.
Ahn
 et al.,
ACS Appl. Mater. Interfaces
13
,
6805
(
2021
).
23.
L.
Huang
,
Q. H.
Thi
,
F.
Zheng
,
X.
Chen
,
Y. W.
Chu
,
C.-S.
Lee
,
J.
Zhao
, and
T. H.
Ly
,
J. Am. Chem. Soc.
142
,
13130
(
2020
).
24.
J. W.
Elam
,
M. D.
Groner
, and
S. M.
George
,
Rev. Sci. Instrum.
73
,
2981
(
2002
).
25.
R. A.
Wind
and
S. M.
George
,
J. Phys. Chem. A
114
,
1281
(
2010
).
26.
C.
Berthomieu
and
R.
Hienerwadel
,
Photosynth. Res.
101
,
157
(
2009
).
27.
J. H.
Lee
,
J. H.
Eun
,
S. G.
Kim
,
S. Y.
Park
,
M. J.
Lee
, and
H. J.
Kim
,
J. Mater. Res.
18
,
2895
(
2003
).
28.
S. H.
Moon
,
T. W.
Heo
,
S. Y.
Park
,
J. H.
Kim
, and
H. J.
Kim
,
J. Electrochem. Soc.
154
,
J408
(
2007
).
29.
S.
Letourneau
,
M. J.
Young
,
N. M.
Bedford
,
Y.
Ren
,
A.
Yanguas-Gil
,
A. U.
Mane
,
J. W.
Elam
, and
E.
Graugnard
,
ACS Appl. Nano Mater.
1
,
4028
(
2018
).
30.
J. D.
Ferguson
,
A. W.
Weimer
, and
S. M.
George
,
Thin Solid Films
371
,
95
(
2000
).
31.
J. W.
Elam
,
J. A.
Libera
, and
J. N.
Hryn
,
ECS Trans.
41
,
147
(
2011
).
32.
A.
Yanguas-Gil
,
J. A.
Libera
, and
J. W.
Elam
,
ECS Trans.
50
,
43
(
2013
).
33.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
34.
D. M.
Hausmann
,
E.
Kim
,
J.
Becker
, and
R. G.
Gordon
,
Chem. Mater.
14
,
4350
(
2002
).
35.
B. B.
Burton
,
D. N.
Goldstein
, and
S. M.
George
,
J. Phys. Chem. C
113
,
1939
(
2009
).
36.
C. E.
Nelson
,
J. W.
Elam
,
M. A.
Cameron
,
M. A.
Tolbert
, and
S. M.
George
,
Surf. Sci.
416
,
341
(
1998
).
37.
D.
Seghete
,
G. B.
Rayner
, Jr.
,
A. S.
Cavanagh
,
V. R.
Anderson
, and
S. M.
George
,
Chem. Mater.
23
,
1668
(
2011
).
38.
M.
Lawson
,
E.
Graugnard
, and
L.
Li
,
Appl. Surf. Sci.
541
,
148461
(
2021
).
39.
L. E.
Alexander
,
I. R.
Beattie
,
A.
Bukovszky
,
P. J.
Jones
,
C. J.
Marsden
, and
G. J. V.
Schalkwyk
,
J. Chem. Soc., Dalton Trans.
1974
(
1
),
81
.
40.
S.
Chempath
,
Y.
Zhang
, and
A. T.
Bell
,
J. Phys. Chem. C
111
,
1291
(
2007
).
41.
C. E.
Nanayakkara
,
A.
Vega
,
G.
Liu
,
C. L.
Dezelah
,
R. K.
Kanjolia
, and
Y. J.
Chabal
,
Chem. Mater.
28
,
8591
(
2016
).
42.
43.
Y.
Lee
,
J. W.
DuMont
,
A. S.
Cavanagh
, and
S. M.
George
,
J. Phys. Chem. C
119
,
14185
(
2015
).
44.
J. W.
Elam
 et al.,
ECS Trans.
58
,
249
(
2013
).
45.
C. H.
Chang
and
S. S.
Chan
,
J. Catal.
72
,
139
(
1981
).
46.
M.
Morales-Luna
,
S. A.
Tomás
,
M. A.
Arvizu
,
M.
Pérez-González
, and
E.
Campos-Gonzalez
,
J. Alloys Compd.
722
,
938
(
2017
).
47.
V.
Dřínek
,
M.
Klementová
,
L.
Palatinus
,
P.
Dytrych
,
R.
Fajgar
,
V.
Jandová
,
M.
Koštejn
, and
J.
Kupčík
,
J. Alloys Compd.
808
,
151470
(
2019
).
48.
M.
Shirazi
and
S. D.
Elliott
,
Nanoscale
7
,
6311
(
2015
).
49.
W. R.
Smith
,
J. Chem. Inf. Comput. Sci.
36
,
151
(
1996
).
50.
S. I.
Castañeda
,
I.
Montero
,
J. M.
Ripalda
,
N.
Díaz
,
L.
Galán
, and
F.
Rueda
,
J. Appl. Phys.
85
,
8415
(
1999
).
51.
A. U.
Mane
,
S.
Letourneau
,
D. J.
Mandia
,
J.
Liu
,
J. A.
Libera
,
Y.
Lei
,
Q.
Peng
,
E.
Graugnard
, and
J. W.
Elam
,
J. Vac. Sci. Technol. A
36
,
01A125
(
2018
).
52.
R. L.
Puurunen
and
W.
Vandervorst
,
J. Appl. Phys.
96
,
7686
(
2004
).
53.
P.
Kumar
,
M.
Singh
, and
G. B.
Reddy
,
Mater. Res. Express
4
,
036405
(
2017
).
54.
L.
Benoist
,
D.
Gonbeau
,
G.
Pfister-Guillouzo
,
E.
Schmidt
,
G.
Meunier
, and
A.
Levasseur
,
Thin Solid Films
258
,
110
(
1995
).
55.
D.
Ganta
,
S.
Sinha
, and
R. T.
Haasch
,
Surf. Sci. Spectra
21
,
19
(
2014
).
56.
A. M.
De Jong
,
H. J.
Borg
,
L. J.
Van Ijzendoorn
,
V.
Soudant
,
V. H. J.
De Beer
,
J. A. R.
Van Veen
, and
J. W.
Niemantsverdriet
,
J. Phys. Chem.
97
,
6477
(
1993
).
57.
W. M.
Parkin
 et al.,
ACS Nano
10
,
4134
(
2016
).
58.
Z.
Kou
,
A.
Hashemi
,
M. J.
Puska
,
A. V.
Krasheninnikov
, and
H.-P.
Komsa
,
npj Comput. Mater.
6
,
59
(
2020
).
59.
S.
Balasubramanyam
,
M. A.
Bloodgood
,
M.
van Ommeren
,
T.
Faraz
,
V.
Vandalon
,
W. M. M.
Kessels
,
M. A.
Verheijen
, and
A. A.
Bol
,
ACS Appl. Mater. Interfaces
12
,
3873
(
2020
).
60.
A.
Sharma
 et al.,
Nanoscale
10
,
8615
(
2018
).
61.
R.
Ganatra
and
Q.
Zhang
,
ACS Nano
8
,
4074
(
2014
).
62.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
,
ACS Nano
4
,
2695
(
2010
).
63.
E.
Mercado
,
A.
Goodyear
,
J.
Moffat
,
M.
Cooke
, and
R. S.
Sundaram
,
J. Phys. D: Appl. Phys.
50
,
184005
(
2017
).
64.
C. H.
Kiang
,
M.
Endo
,
P. M.
Ajayan
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. Lett.
81
,
1869
(
1998
).
65.
M.
Bretz
,
B. G.
Demczyk
, and
L.
Zhang
,
J. Cryst. Growth
141
,
304
(
1994
).
66.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002024 for additional in situ quartz microbalance measurements, in situ Fourier transform infrared spectroscopy, ex situ x-ray photoelectron spectroscopy, thermochemical calculations, spectroscopic ellipsometry, Raman spectroscopy, atomic force microscopy, and transmission electron microscopy.

Supplementary Material

You do not currently have access to this content.