Ultra-wide bandgap gallium oxide (∼5 eV) has emerged as a novel semiconductor platform for extending the current limits of power electronics and deep ultraviolet optoelectronics at a predicted fraction of cost. Finding effective acceptor dopant for gallium oxide is a hot issue. One element that quite often is considered as a potential candidate is zinc. A number of experimental works have reported the signature of Zn-acceptor, but the direct evidence of hole conductivity was missing. In this work, p-type Zn-doped Ga2O3 thin films were grown by the metal-organic chemical vapour deposition technique on sapphire substrates. By high-temperature Hall effect measurements, Zn related acceptor level ionization energy as 0.77 eV above the valence band maximum was determined. Additionally, we have carried out the simulation study regarding the application of the Zn:Ga2O3 semi-insulating material, to be used as a guard ring for improving the high voltage performance of the Schottky diode structure.

1.
S. J.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
,
J. Appl. Phys.
124
,
220901
(
2018
).
2.
J.
Zhang
,
J.
Shi
,
D.-C.
Qi
,
L.
Chen
, and
K. H. L.
Zhang
,
APL Mater.
8
,
020906
(
2020
).
3.
J.
Zhang
,
C.
Xia
,
Q.
Deng
,
W.
Xu
,
H.
Shi
,
F.
Wu
, and
J.
Xu
,
J. Phys. Chem. Solids
67
,
1656
(
2006
).
4.
J.
Åhman
,
G.
Svensson
, and
J.
Albertsson
,
Acta Crystallogr. C
52
,
1336
(
1996
).
5.
E.
Chikoidze
 et al,
Mater. Today Phys.
15
,
100263
(
2020
).
6.
C.
Li
,
J.-L.
Yan
,
L.-Y.
Zhang
, and
G.
Zhao
,
Chin. Phys. B
21
,
127104
(
2012
).
7.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
,
Appl. Phys. Lett.
112
,
032108
(
2018
).
8.
C. Y.
Yu
,
X. J.
Liu
,
J.
Lu
,
G. P.
Zheng
, and
C. T.
Liu
,
Sci. Rep.
3
,
2124
(
2013
).
9.
J. L.
Lyons
,
Semicond. Sci. Technol.
33
,
05LT02
(
2018
).
10.
N. K.
Shrestha
,
K.
Lee
,
R.
Kirchgeorg
,
R.
Hahn
, and
P.
Schmuki
,
Electrochem. Commun.
35
,
112
(
2013
).
11.
Y.
Sakata
,
Y.
Matsuda
,
T.
Yanagida
,
K.
Hirata
,
H.
Imamura
, and
K.
Teramura
,
Cataly. Lett.
125
,
22
(
2008
).
12.
Q.
Feng
,
J.
Liu
,
Y.
Yang
,
D.
Pan
,
Y.
Xing
,
X.
Shi
,
X.
Xia
, and
H.
Liang
,
J. Alloy Compd.
687
,
964
(
2016
).
13.
X. H.
Wang
,
F. B.
Zhang
,
K.
Saito
,
T.
Tanaka
,
M.
Nishio
, and
Q. X.
Guo
,
J. Phys. Chem. Solids
75
,
1201
(
2014
).
14.
F.
Alema
 et al,
Phys. Status Solids A
214
,
1600688
(
2017
).
15.
F.
Alema
,
B.
Hertog
,
A.
Osinsky
,
P.
Mukhopadhyay
,
M.
Toporkov
, and
W. V.
Schoenfeld
,
J. Cryst. Growth
475
,
77
(
2017
).
16.
Z.
Baji
,
I.
Cora
,
Z. E.
Horváth
,
E.
Agócs
, and
Z.
Szabó
,
J. Vac. Sci. Technol. A
39
,
032411
(
2021
).
17.
T. D.
Gustafson
,
J.
Jesenovec
,
C. A.
Lenyk
,
N. C.
Giles
,
J. S.
McCloy
,
M. D.
McCluskey
, and
L. E.
Halliburton
,
J. Appl. Phys.
129
,
155701
(
2021
).
18.
D.
Skachkov
and
W. R. L.
Lambrecht
,
Appl. Phys. Lett.
114
,
202102
(
2019
).
19.
C.
Zhang
,
F.
Liao
,
X.
Liang
,
H.
Gong
,
Q.
Liu
,
L.
Li
,
X.
Qin
,
X.
Huang
, and
C.
Huang
,
Phys. B Condens. Matter
562
,
124
(
2019
).
20.
C.
Pansegrau
,
J.
Jesenovec
,
J. S.
McCloy
, and
M. D.
McCluskey
,
Appl. Phys. Lett.
119
,
102104
(
2021
).
21.
F. A.
Kroger
,
The Chemistry of Imperfect Crystals
(
North-Holland Publishing Company
,
Amsterdam
,
1964
), p.
1039
.
22.
M. J.
Tadjer
 et al,
J. Phys. D Appl. Phys.
54
,
034005
(
2021
).
23.
E.
Chikoidze
 et al,
J. Mater. Chem. C
7
,
10231
(
2019
).
24.
S.
Modak
 et al,
APL Mater.
10
,
031106
(
2022
).
25.
E.
Chikoidze
 et al,
Mater. Today Phys.
3
,
118
(
2017
).
26.
G.
Pozina
,
C.-W.
Hsu
,
N.
Abrikossova
, and
C.
Hemmingsson
,
Phys. Status Solidi A
218
,
2100486
(
2021
).
27.
E.
Chikoidze
 et al,
Cryst. Growth Des.
20
,
2535
(
2020
).
28.
J. S.
Blakemore
,
Semiconductor Statistics
(
Courier Corporation
, New York,
2002
).
29.
N.
Ma
,
N.
Tanen
,
A.
Verma
,
Z.
Guo
,
T.
Luo
,
H.
(Grace) Xing
, and
D.
Jena
,
Appl. Phys. Lett.
109
,
212101
(
2016
).
30.
J.
Jesenovec
,
J.
Varley
,
S. E.
Karcher
, and
J. S.
McCloy
,
J. Appl. Phys.
129
,
225702
(
2021
).
32.
K.
Ghosh
and
U.
Singisetti
,
J. Appl. Phys.
124
,
085707
(
2018
).
You do not currently have access to this content.