Repetitive discharges in dielectric liquid are involved in many technological applications. The relatively poor reproducibility of such discharges, induced by significant modification of experimental conditions (electrode and liquid), hinders the understanding of their fundamental dynamics and optimizing processes. In this paper, we study the electrical characteristics of multiple discharges run in de-ionized water, at low frequency (3 Hz), using pin-to-plate electrode geometry, under varying conditions of gap distance (50–500 μm), electrode composition (Cu and W), and voltage polarity (amplitude of ±20 kV and pulse width of 500 ns). The voltage and current waveforms of each occurring discharge are recorded and then processed to determine the probability of discharge occurrence, breakdown voltage, discharge current, discharge delay, injected charge, and injected energy. The results show that the highest numbers of occurring discharges are achieved at shortest distance, using the Cu electrode, and negative polarity. The data points comprising the electrical characteristics waveforms (e.g., breakdown voltage) are more or less dispersed, depending on the electrode composition and voltage polarity. Moreover, in negative polarity, a reflected positive pulse of ∼5 kV is observed when discharges do not occur in the first pulse. Considering that these pulses may induce discharges, their characteristics are also provided. Finally, the voltage-current plots show appreciable dependence on discharge conditions, and the data are well fitted by linear profiles with slopes, i.e., resistances, that may reflect the ignition conditions of the discharge.

1.
J.
Townsend
,
The Theory of Ionization of Gases by Collision
(
Constable & Company Ltd.
,
London
,
1910
).
2.
T. G.
Beuthe
and
J. S.
Chang
, “
Gas discharge phenomena
,” in
Handbook of Electrostatic Processes
(Marcel Dekker, Inc., New York,
1995
), pp.
147
194
.
3.
Y.
Raizer
,
Gas Discharge Physics
(
Springer-Verlag
,
Berlin
,
1991
).
4.
A.
Durocher-Jean
,
I. R.
Durán
,
S.
Asadollahi
,
G.
Laroche
, and
L.
Stafford
,
Plasma Process. Polym.
17
,
1900229
(
2020
).
5.
M.
Mitronika
,
J.
Profili
,
A.
Goullet
,
L.
Stafford
,
A.
Granier
, and
M.
Richard-Plouet
,
Thin Solid Films
709
,
138212
(
2020
).
6.
L.
Zhao
,
W.
Liu
,
P.
Liu
,
J.
Tian
,
M.
Xu
,
S.
Sun
, and
Y.
Wang
,
Plasma Process. Polym.
17
,
1900148
(
2020
).
7.
J.
Diamond
,
J.
Profili
, and
A.
Hamdan
,
Plasma Chem. Plasma Process
39
,
1483
(
2019
).
8.
J.
Gubkin
,
Ann. Phys. Chem. NF
268
,
114
(
1887
).
9.
H.
Cavendish
,
Philos. Trans. R. Soc. London A
75
,
372
(
1785
).
10.
S.
Kumar
,
R.
Singh
,
T. P.
Singh
, and
B. L.
Sethi
,
J. Mater. Process. Technol.
209
,
3675
(
2009
).
11.
A.
Hamdan
,
D. A.
Ridani
,
J.
Diamond
, and
R.
Daghrir
,
J. Phys. D: Appl. Phys.
53
,
355202
(
2020
).
12.
A.
Hamdan
,
D.
El Abiad
, and
M. S.
Cha
,
Plasma Chem. Plasma Process
41
,
1647
(
2021
).
13.
T.
Merciris
,
F.
Valensi
, and
A.
Hamdan
,
J. Appl. Phys.
129
,
063303
(
2021
).
14.
I.
Marinov
,
S.
Starikovskaia
, and
A.
Rousseau
,
J. Phys. D: Appl. Phys.
47
,
224017
(
2014
).
15.
A.
Hamdan
,
J.
Gorry
,
T.
Merciris
, and
J.
Margot
,
J. Appl. Phys.
128
,
033304
(
2020
).
16.
S. H.
Jung
,
M. R.
Kim
,
S. H.
Jeong
,
S. U.
Kim
,
O. J.
Lee
,
K. H.
Lee
,
J. H.
Suh
, and
C. K.
Park
,
Appl. Phys. A
76
,
285
(
2003
).
17.
A.
Starikovskiy
,
Y.
Yang
,
Y. I.
Cho
, and
A.
Fridman
,
Plasma Sources Sci. Technol.
20
,
024003
(
2011
).
18.
D.
Dobrynin
,
Y.
Seepersad
,
M.
Pekker
,
M.
Shneider
,
G.
Friedman
, and
A.
Fridman
,
J. Phys. D: Appl. Phys.
46
,
105201
(
2013
).
19.
A.
Starikovskiy
,
Plasma Sources Sci. Technol.
22
,
012001
(
2013
).
20.
A.
Descoeudres
,
C.
Hollenstein
,
G.
Wälder
,
R.
Demellayer
, and
R.
Perez
,
Plasma Sources Sci. Technol.
17
,
024008
(
2008
).
21.
T.
Belmonte
,
A.
Hamdan
,
F.
Kosior
,
C.
Noël
, and
G.
Henrion
,
J. Phys. D: Appl. Phys.
47
,
224016
(
2014
).
22.
M.
Vittori Antisari
,
R.
Marazzi
, and
R.
Krsmanovic
,
Carbon
41
,
2393
(
2003
).
23.
N.
Bourbeau
,
A.
Dorval
,
F.
Valensi
, and
A.
Hamdan
,
J. Phys. D: Appl. Phys.
54
,
485201
(
2021
).
24.
P.
Hoffer
,
P.
Bílek
,
V.
Prukner
,
Z.
Bonaventura
, and
M.
Šimek
,
Plasma Sources Sci. Technol.
31
,
015005
(
2022
).
25.
A.
Hamdan
,
F.
Kosior
,
C.
Noel
,
G.
Henrion
,
J. N.
Audinot
,
T.
Gries
, and
T.
Belmonte
,
J. Appl. Phys.
113
,
213303
(
2013
).
26.
A.
Hamdan
,
C.
Noel
,
F.
Kosior
,
G.
Henrion
, and
T.
Belmonte
,
J. Appl. Phys.
113
,
043301
(
2013
).
27.
T. J.
Gallagher
and
T. J.
Lewis
,
Br. J. Appl. Phys.
15
,
929
(
1964
).
28.
C.
Rond
,
N.
Fagnon
,
A.
Vega
, and
X.
Duten
,
J. Phys. D: Appl. Phys.
53
,
335204
(
2020
).
29.
A.
Hamdan
,
C.
Noël
,
J.
Ghanbaja
,
S.
Migot-Choux
, and
T.
Belmonte
,
Mater. Chem. Phys.
142
,
199
(
2013
).
30.
Y.
Cao
,
G.
Qu
,
T.
Li
,
N.
Jiang
, and
T.
Wang
,
Plasma Sci. Technol.
20
,
103001
(
2018
).
31.
Z.
Machala
,
B.
Tarabová
,
D.
Sersenová
,
M.
Janda
, and
K.
Hensel
,
J. Phys. D: Appl. Phys.
52
,
034002
(
2019
).
32.
V. V.
Kovačević
,
B. P.
Dojčinović
,
J.
Milica
,
G. M.
Roglić
,
B. M.
Obradović
, and
M. M.
Kuraica
,
J. Phys. D: Appl. Phys.
50
,
155205
(
2017
).
33.
P.
Lukes
,
M.
Clupek
,
V.
Babicky
,
I.
Sisrova
, and
V.
Janda
,
Plasma Sources Sci. Technol.
20
,
034011
(
2011
).
34.
P.
Lukeš
,
M.
Člupek
,
V.
Babický
,
P.
Šunka
,
J. D.
Skalný
,
M.
Štefečka
,
J.
Novak
, and
Z.
Málková
,
Czech. J. Phys.
56
,
B916
(
2006
).
35.
A.
Dorval
,
N.
Bourbeau
,
K.
Géraud
,
F.
Valensi
, and
A.
Hamdan
, in
2021 IEEE 16th Nanotechnology Materials and Devices Conference Influence
, Vancouver, Canada, 12–15 December 2021 (IEEE, Vancouver, Canada,
2021
), pp.
256
259
.
36.
T.
Merciris
,
F.
Valensi
, and
A.
Hamdan
,
IEEE Trans. Plasma Sci.
48
,
3193
(
2020
).
37.
J.
Deuermeier
,
H.
Liu
,
L.
Rapenne
,
T.
Calmeiro
,
G.
Renou
,
R.
Martins
,
D.
Munoz-Rojas
, and
E.
Fortunato
,
APL Mater.
6
,
096103
(
2018
).
38.
M.
Bivour
,
J.
Temmler
,
H.
Steinkemper
, and
M.
Hermle
,
Sol. Energy Mater. Sol. Cells
142
,
34
(
2015
).
39.
J.
Meyer
,
S.
Hamwi
,
M.
Kröger
,
W.
Kowalsky
,
T.
Riedl
, and
A.
Kahn
,
Adv. Mater.
24
,
5408
(
2012
).
40.
L. E.
McAllister
,
Phys. Rev.
21
,
122
(
1923
).
41.
E. A.
Coomes
,
Phys. Rev.
55
,
519
(
1939
).
42.
H. Y.
Chang
,
A.
Alvarado
, and
J.
Marian
,
Appl. Surf. Sci.
450
,
190
(
2018
).
43.
N.
Koshida
and
O.
Tomita
,
Jpn. J. Appl. Phys.
24
,
92
(
1985
).
44.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001923 for the variation of the discharges’ electrical characteristics [breakdown voltage, discharge current (peak value), discharge delay, injected charge, and energy] as a function of normalized discharge number for discharges generated in water between two W electrodes under positive and negative polarity conditions; and a table that summarizes the variation in water conductivity/resistance values (deduced from Figs. 11 and 12) at different experimental conditions.

Supplementary Material

You do not currently have access to this content.