The etching of HfO2 and ZrO2 high-k dielectrics is studied using plasma enhanced atomic layer etching. The etching method relies on a continuous argon inductively coupled plasma discharge in which reactive gases are pulsed, followed by substrate biasing; both steps are separated by purge periods. It is found that pure BCl3 is too chemically active while a Cl2–BCl3 allows a high process synergy; in addition, the latter gives a high selectivity to SiO2. The optimal etch conditions are applied to high-k layers deposited on top of WS2 transition metal dichalcogenide. Postetch analysis shows negligible tungsten and sulfur depletion as well as negligible change in optical (Raman) response of the 2D layer, indicating that atomic layer etching concepts allows us to prevent WS2 material loss or damage.

1.
C.
Huyghebaert
et al., “2D materials: Roadmap to CMOS integration,” in 2018 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2018), pp. 22.1.1–22.1.4.
2.
G. V.
Resta
,
A.
Leonhardt
,
Y.
Balaji
,
S.
De Gendt
,
P.-E.
Gaillardon
, and
G.
De Micheli
,
IEEE Trans. Very Large Scale Integr. Syst.
27
,
1486
(
2019
).
3.
D.
Akinwande
,
C.
Huyghebaert
,
C.-H.
Wang
,
M. I.
Serna
,
S.
Goossens
,
L.-J.
Li
,
H. S. P.
Wong
, and
F. H. L.
Koppens
,
Nature
573
,
507
(
2019
).
4.
Y.
Liu
,
X.
Duan
,
H.-J.
Shin
,
S.
Park
,
Y.
Huang
, and
X.
Duan
,
Nature
591
,
43
(
2021
).
5.
D.
Braga
,
I.
Gutiérrez Lezama
,
H.
Berger
, and
A. F.
Morpurgo
,
Nano Lett.
12
,
5218
(
2012
).
6.
W.
Zhang
,
Z.
Huang
,
W.
Zhang
, and
Y.
Li
,
Nano Res.
7
,
1731
(
2014
).
7.
G.
Lee
,
S.
Oh
,
J.
Kim
, and
J.
Kim
,
ACS Appl. Mater. Interfaces
12
,
23127
(
2020
).
8.
I.
Asselberghs
et al., “Scaled transistors with 2D materials from the 300 mm fab,” in 2020 IEEE Silicon Nanoelectronics Workshop (SNW) (IEEE, 2020), pp. 67–68.
9.
I.
Asselberghs
et al., “Wafer-scale integration of double gated WS2-transistors in 300 mm Si CMOS fab,” in 2020 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2020), pp. 40.2.1–40.2.4.
10.
H.
Cun
,
M.
Macha
,
H.
Kim
,
K.
Liu
,
Y.
Zhao
,
T.
LaGrange
,
A.
Kis
, and
A.
Radenovic
,
Nano Res.
12
,
2646
(
2019
).
11.
J.
Mo
,
S. E.
Kazzi
,
W.
Mortelmans
,
A. N.
Mehta
,
S.
Sergeant
,
Q.
Smets
,
I.
Asselberghs
, and
C.
Huyghebaert
,
Nanotechnology
31
,
125604
(
2020
).
12.
A.
Cohen
,
A.
Patsha
,
P. K.
Mohapatra
,
M.
Kazes
,
K.
Ranganathan
,
L.
Houben
,
D.
Oron
, and
A.
Ismach
,
ACS Nano
15
,
526
(
2021
).
13.
M.
Chubarov
et al.,
ACS Nano
15
,
2532
(
2021
).
14.
B.
Groven
et al.,
Chem. Mater.
29
,
2927
(
2017
).
15.
B.
Groven
et al.,
J. Vac. Sci. Technol. A
36
,
01A105
(
2018
).
16.
B.
Groven
et al.,
Chem. Mater.
30
,
7648
(
2018
).
17.
S.
Balasubramanyam
,
M. J. M.
Merkx
,
M. A.
Verheijen
,
W. M. M.
Kessels
,
A. J. M.
Mackus
, and
A. A.
Bol
,
ACS Mater. Lett.
2
,
511
(
2020
).
18.
K. S.
Kim
et al.,
ACS Appl. Mater. Interfaces
9
,
11967
(
2017
).
19.
T.
Park
et al.,
RSC Adv.
7
,
884
(
2017
).
20.
L.
Cheng
,
X.
Qin
,
A. T.
Lucero
,
A.
Azcatl
,
J.
Huang
,
R. M.
Wallace
,
K.
Cho
, and
J.
Kim
,
ACS Appl. Mater. Interfaces
6
,
11834
(
2014
).
21.
L.
Daukiya
,
J.
Seibel
, and
S. D.
Feyter
,
Adv. Phys. X
4
,
1625723
(
2019
).
22.
P.-J.
Wyndaele
,
J.-F.
de Marneffe
, and
S.
De Gendt
,
ECS Meet. Abstr.
MA2020-02
,
1348
(
2020
).
23.
X.
Wu
et al., “Ald encapsulation of CVD WS2 for stable and high-performance FET devices,” in 2021 5th IEEE Electron Devices Technology Manufacturing Conference (EDTM) (IEEE, 2021), pp. 1–3.
24.
D.
Marinov
et al.,
npj 2D Mater. Appl.
5
,
17
(
2021
).
25.
Z.
Gao
,
Z.
Zhou
, and
D.
Tománek
,
ACS Nano
13
,
5103
(
2019
).
26.
P.-C.
Shen
et al.,
Nature
593
,
211
(
2021
).
27.
Y.
Zheng
,
J.
Gao
,
C.
Han
, and
W.
Chen
,
Cell Rep. Phys. Sci.
2
,
100298
(
2021
).
28.
Y.
Liu
et al.,
Nature
557
,
696
(
2018
).
29.
H.
Zhu
,
X.
Gan
,
A.
McCreary
,
R.
Lv
,
Z.
Lin
, and
M.
Terrones
,
Nano Today
30
,
100829
(
2020
).
30.
Y.
Wang
,
Y.
Zheng
,
C.
Han
, and
W.
Chen
,
Nano Res.
14
,
1682
(
2021
).
31.
Y.
Liu
et al.,
ACS Nano
7
,
4202
(
2013
).
32.
M. H.
Jeon
et al.,
Nanotechnology
26
,
355706
(
2015
).
33.
S.
Xiao
,
P.
Xiao
,
X.
Zhang
,
D.
Yan
,
X.
Gu
,
F.
Qin
,
Z.
Ni
,
Z. J.
Han
, and
K. K.
Ostrikov
,
Sci. Rep.
6
,
19945
(
2016
).
34.
M. H.
Heyne
,
D.
Marinov
,
N.
Braithwaite
,
A.
Goodyear
,
J.-F.
de Marneffe
,
M.
Cooke
,
I.
Radu
,
E. C.
Neyts
, and
S. D.
Gendt
,
2D Mater.
6
,
035030
(
2019
).
35.
S.
Banna
,
A.
Agarwal
,
G.
Cunge
,
M.
Darnon
,
E.
Pargon
, and
O.
Joubert
,
J. Vac. Sci. Technol. A
30
,
040801
(
2012
).
36.
S.
Tan
,
W.
Yang
,
K. J.
Kanarik
,
T.
Lill
,
V.
Vahedi
,
J.
Marks
, and
R. A.
Gottscho
,
ECS J. Solid State Sci. Technol.
4
,
N5010
(
2015
).
37.
J.
Robertson
,
Rep. Prog. Phys.
69
,
327
(
2005
).
38.
N.
Gulbrandsen
,
Å.
Fredriksen
,
J.
Carr
, and
E.
Scime
,
Phys. Plasmas
22
,
033505
(
2015
).
39.
R. M.
Martin
,
H.-O.
Blom
, and
J. P.
Chang
,
J. Vac. Sci. Technol. A
27
,
217
(
2009
).
40.
R. M.
Martin
and
J. P.
Chang
,
J. Vac. Sci. Technol. A
27
,
209
(
2009
).
41.
C.
Steinbrüchel
,
Appl. Phys. Lett.
55
,
1960
(
1989
).
42.
P. M.
Gevers
,
H. C. W.
Beijerinck
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
103
,
083304
(
2008
).
43.
E.
Sungauer
,
E.
Pargon
,
X.
Mellhaoui
,
R.
Ramos
,
G.
Cunge
,
L.
Vallier
,
O.
Joubert
, and
T.
Lill
,
J. Vac. Sci. Technol. B
25
,
1640
(
2007
).
44.
K.
Nakamura
,
D.
Hamada
,
Y.
Ueda
,
K.
Eriguchi
, and
K.
Ono
,
Appl. Phys. Express
2
,
016503
(
2009
).
45.
K. J.
Kanarik
et al.,
J. Vac. Sci. Technol. A
35
,
05C302
(
2017
).
46.
E.
Sungauer
,
X.
Mellhaoui
,
E.
Pargon
, and
O.
Joubert
,
Microelectron. Eng.
86
,
965
(
2009
).
47.
T.
Lin
et al.,
ACS Appl. Mater. Interfaces
7
,
15892
(
2015
).
You do not currently have access to this content.