Thermal atomic layer etching (ALE) is a promising method for isotropic etching with atomic level precision and high conformality over three-dimensional structures. In this study, a thermal ALE process for titanium nitride (TiN) films was developed using surface modification with a Cl2/Ar downstream plasma followed by infrared (IR) annealing of the films. The oxygen-free Cl2-based plasma was adopted to enable highly selective etching of TiN with regard to various materials. It was confirmed that spontaneous etching of TiN during radical exposure can be suppressed at a surface temperature of −10 °C. Measurements of etch per cycle (EPC) of TiN demonstrated that the EPC is self-limiting with respect to both the radical exposure and IR annealing times. With repeated steps of self-limiting radical exposure and IR annealing, TiN was etched at 2.0 nm/cycle, while no thickness change was observed for poly-Si, SiO2, Si3N4, W, and HfO2. The selectivity to amorphous carbon was higher than 4. X-ray photoelectron spectroscopy analysis revealed that during surface modification, NClx species sublimate spontaneously, while TiClx species remain in the surface-modified layer on TiN. This TiClx-based modified layer desorbs in the IR annealing step, and the TiN surface then returns to its original condition (pristine TiN) before surface modification.

1.
J.
Micout
 et al, Technical Digest on IEEE Electron Devices Meeting, San Francisco, CA, 2–6 December 2017 (IEEE, New York, 2017), p. 721.
2.
D.
Benoit
 et al, Technical Digest on IEEE Electron Devices Meeting, Washington, DC, 7–9 December 2015 (IEEE, New York, 2015), p. 201.
3.
D.
Hisamoto
,
T.
Kaga
,
Y.
Kawamoto
, and
E.
Takeda
,
IEEE Electron. Device Lett.
11
,
36
(
1990
).
4.
K. J.
Kuhn
 et al, Technical Digest on IEEE Electron Devices Meeting, San Francisco, CA, 10–13 December 2012 (IEEE, New York, 2012), p. 171.
5.
G.
Bae
 et al, Technical Digest on IEEE Electron Devices Meeting, San Francisco, CA, 1–5 December 2018 (IEEE, New York, 2018), p. 656.
6.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
7.
S. M.
George
,
Acc. Chem. Res.
53
,
1151
(
2020
).
8.
A.
Fischer
,
A.
Routzahn
,
S. M.
George
, and
T.
Lill
,
J. Vac. Sci. Technol. A
39
,
030801
(
2021
).
9.
Y.
Lee
and
S. M.
George
,
ACS Nano
9
,
2061
(
2015
).
10.
Y.
Lee
,
C.
Huffman
, and
S. M.
George
,
Chem. Mater.
28
,
7657
(
2016
).
11.
A. M.
Cano
,
A. E.
Marquardt
,
J. W.
DuMont
, and
S. M.
George
,
J. Phys. Chem. C
123
,
10346
(
2019
).
12.
J. A.
Murdzek
and
S. M.
George
,
J. Vac. Sci. Technol. A
38
,
022608
(
2020
).
13.
J. W.
Clancey
,
A. S.
Cavanagh
,
J. E. T.
Smith
,
S.
Sharma
, and
S. M.
George
,
J. Phys. Chem. C
124
,
287
(
2020
).
14.
A.
Mameli
,
M. A.
Verheijen
,
A. J. M.
Mackus
,
W. M.
Kessels
, and
F.
Roozeboom
,
ACS Appl. Mater. Interfaces
10
,
38588
(
2018
).
15.
N. R.
Johnson
,
H.
Sun
,
K.
Sharma
, and
S. M.
George
,
J. Vac. Sci. Technol. A
34
,
050603
(
2016
).
16.
Y.
Lee
and
S. M.
George
,
Chem. Mater.
29
,
8202
(
2017
).
17.
N. R.
Johnson
and
S. M.
George
,
ACS Appl. Mater. Interfaces
9
,
34435
(
2017
).
18.
W.
Xie
,
P. C.
Lemaire
, and
G. N.
Parsons
,
ACS Appl. Mater. Interfaces
10
,
9147
(
2018
).
19.
J.
Zhao
,
M.
Konh
, and
A.
Teplyakov
,
Appl. Surf. Sci.
455
,
438
(
2018
).
20.
M.
Konh
,
C.
He
,
X.
Lin
,
X.
Guo
,
V.
Pallem
,
R. L.
Opila
,
A. V.
Teplyakov
,
Z.
Wang
, and
B.
Yuan
,
J. Vac. Sci. Technol. A
37
,
021004
(
2019
).
21.
H.
Nishino
,
N.
Hayasaka
, and
H.
Okano
,
J. Appl. Phys.
74
,
1345
(
1993
).
22.
K.
Shinoda
,
M.
Izawa
,
T.
Kanekiyo
,
K.
Ishikawa
, and
M.
Hori
,
Appl. Phys. Express
9
,
106201
(
2016
).
23.
N.
Miyoshi
,
H.
Kobayashi
,
K.
Shinoda
,
M.
Kurihara
,
T.
Watanabe
,
K.
Kouzuma
,
K.
Yokogawa
,
S.
Sakai
, and
M.
Izawa
,
Jpn. J. Appl. Phys.
56
,
06HB01
(
2017
).
24.
K.
Shinoda
,
N.
Miyoshi
,
H.
Kobayashi
,
M.
Izawa
,
T.
Saeki
,
K.
Ishikawa
, and
M.
Hori
,
J. Vac. Sci. Technol. A
37
,
051002
(
2019
).
25.
N.
Miyoshi
,
K.
Shinoda
,
H.
Kobayashi
,
M.
Kurihara
,
Y.
Kouzuma
, and
M.
Izawa
,
J. Vac. Sci. Technol. A
39
,
052601
(
2021
).
26.
N.
Miyoshi
,
H.
Kobayashi
,
K.
Shinoda
,
M.
Kurihara
,
K.
Kawamura
,
Y.
Kouzuma
, and
M.
Izawa
,
J. Vac. Sci. Technol. A
40
,
012601
(
2022
).
27.
B.
Lee Sang
,
M.-J.
Gour
,
M.
Darnon
,
S.
Ecoffey
,
A.
Jaouad
,
B.
Sadani
, and
D.
Drouin
,
J. Vac. Sci. Technol. B
34
,
02M102
(
2016
).
28.
K.
Shinoda
,
N.
Miyoshi
,
H.
Kobayashi
,
M.
Izawa
,
K.
Ishikawa
, and
M.
Hori
,
J. Phys. D: Appl. Phys.
52
,
475106
(
2019
).
29.
D.
Shim
,
J.
Kim
,
Y.
Kim
, and
H.
Chae
,
J. Vac. Sci. Technol. B
40
,
022208
(
2022
).
30.
D.
Kim
,
J.
Woo
,
K.
Baek
,
K.
Park
,
K.
Lee
,
K.
Kim
, and
L.
Do
,
Vacuum
86
,
380
(
2011
).
31.
B. E.
Deal
and
A. S.
Grove
,
J. Appl. Phys.
36
,
3770
(
1965
).
32.
N.
Cabrera
and
N. F.
Mott
,
Rep. Prog. Phys.
12
,
163
(
1949
).
33.
T.
Lill
,
Atomic Layer Processing
(
WILEY-VCH
, Weinheim, Germany,
2021
).
34.
D.
Kim
,
X.
Yang
,
J.
Woo
,
D.
Um
, and
C.
Kim
,
J. Vac. Sci. Technol. A
27
,
1320
(
2009
).
35.
H.
Tiznado
and
F.
Zaera
,
J. Phys. Chem. B
110
,
13491
(
2006
).
36.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001827 for high-resolution O1s spectra in an ALE cycle.

Supplementary Material

You do not currently have access to this content.