The impact of the number of graphene layers on the spectral responsivity and response speed of graphene/n-type Si (Gr/n-Si)-based Schottky barrier photodiodes is investigated. Gr/n-Si photodiode devices are fabricated by transferring chemical vapor deposition-grown graphene layers one by one on n-Si substrates, reaching up to three graphene layers. The devices show a clear rectifying Schottky character and have a maximum responsivity at a peak wavelength of 905 nm. Wavelength-resolved and time-dependent photocurrent measurements demonstrated that both spectral responsivity and response speed are enhanced as the number of graphene layers is increased from 1 to 3 on n-Si substrates. For example, the spectral responsivity and the response speed of the fabricated device were found to be improved by about 15% (e.g., from 0.65 to 0.75 AW−1) and 50% (e.g., 14 to 7 μs), respectively, when three graphene layers are used as the hole-collecting cathode electrode. The experimentally obtained results showed that the device parameters, such as spectral responsivity and response speed of Gr/n-Si Schottky barrier photodiodes, can be boosted simply by increasing the number of graphene layers on n-Si substrates.

1.
A.
Bablich
,
S.
Kataria
, and
M.
Lemme
,
Electronics
5
,
13
(
2016
).
2.
X.
Liu
 et al,
Org. Electron.
64
,
22
(
2019
).
3.
A.
Hekmatikia
and
Y.
Abdi
,
IEEE Electron Device Lett.
39
,
216
(
2018
).
4.
S.
Riazimehr
,
A.
Bablich
,
D.
Schneider
,
S.
Kataria
,
V.
Passi
,
C.
Yim
,
G. S.
Duesberg
, and
M. C.
Lemme
,
Solid State Electron.
115
,
207
(
2016
).
5.
X.
Chen
 et al,
Nano Lett.
17
,
6391
(
2017
).
6.
A.
Kim
,
G.
Lee
, and
J.
Kim
,
J. Vac. Sci. Technol. A
39
,
053412
(
2021
).
7.
X.
Li
 et al,
Small
12
,
595
(
2016
).
8.
P.
Lv
,
X.
Zhang
,
X.
Zhang
,
W.
Deng
, and
J.
Jie
,
IEEE Electron Device Lett.
34
,
1337
(
2013
).
9.
C. C.
Chen
,
M.
Aykol
,
C. C.
Chang
,
A. F. J.
Levi
, and
S. B.
Cronin
,
Nano Lett.
11
,
1863
(
2011
).
10.
Y.
Wang
,
S.
Yang
,
D. R.
Lambada
, and
S.
Shafique
,
Sens. Actuators A
314
,
112232
(
2020
).
11.
D.
Sinha
and
J. U.
Lee
,
Nano Lett.
14
,
4660
(
2014
).
12.
D.
Xiang
,
C.
Han
,
Z.
Hu
,
B.
Lei
,
Y.
Liu
,
L.
Wang
,
W. P.
Hu
, and
W.
Chen
,
Small
11
,
4829
(
2015
).
13.
A.
Pelella
,
A.
Grillo
,
E.
Faella
,
G.
Luongo
,
M. B.
Askari
, and
A.
Di Bartolomeo
,
ACS Appl. Mater. Interfaces
13
,
47895
(
2021
).
14.
A.
Di Bartolomeo
,
Phys. Rep.
606
,
1
(
2016
).
15.
A.
Di Bartolomeo
,
G.
Luongo
,
L.
Iemmo
,
F.
Urban
, and
F.
Giubileo
,
IEEE Trans. Nanotechnol.
17
,
1133
(
2018
).
16.
M.
Fidan
,
Ö.
Ünverdi
, and
C.
Çelebi
,
Sens. Actuators A
331
,
112829
(
2021
).
17.
N.
Şahan
,
M.
Fidan
, and
C.
Çelebi
,
Appl. Phys. A
126
,
938
(
2020
).
18.
D.
Periyanagounder
,
P.
Gnanasekar
,
P.
Varadhan
,
J. H.
He
, and
J.
Kulandaivel
,
J. Mater. Chem. C
6
,
9545
(
2018
).
19.
S.
Riazimehr
 et al,
ACS Photonics
6
,
107
(
2019
).
20.
A.
Di Bartolomeo
 et al,
2D Mater.
4
,
015024
(
2017
).
21.
H.
Aydin
,
S. B.
Kalkan
,
C.
Varlikli
, and
C.
Celebi
,
Nanotechnology
29
,
145502
(
2018
).
22.
S. K.
Cheung
and
N. W.
Cheung
,
Appl. Phys. Lett.
49
,
85
(
1986
).
You do not currently have access to this content.