We have investigated photoassisted chemical vapor deposition (PACVD) of Ru on functionalized alkanethiolate self-assembled monolayers (SAMs) using (η3-allyl)Ru(CO)3X (X = Cl, Br, I) precursors. Three SAMs were employed with —CH3, —OH, or —COOH terminal groups. Our data show that (η3-allyl)Ru(CO)3Cl molecularly adsorbs on the functionalized SAMs and no Ru(0) is deposited in either the dark or under UV light. Similarly, (η3-allyl)Ru(CO)3I molecularly adsorbs on all substrates studied. For (η3-allyl)Ru(CO)3Br at longer deposition times under UV light, Ru(0) and RuOx are deposited on —CH3- and —OH-terminated SAMs. In contrast for —COOH-terminated SAMs, little or no Ru is deposited, which is attributed to the formation of Ru-carboxylate complexes that block further deposition. Density Functional Theory calculations show that the different deposition behaviors observed are not due to the primary photoprocess, which is the loss of a carbonyl ligand, but rather can be attributed to the energy required to lose a second carbonyl ligand, a secondary photoprocess. Together, these data suggest that PACVD can be employed for area selective deposition.

1.
M. F. J.
Vos
,
S. N.
Chopra
,
M. A.
Verheijen
,
J. G.
Ekerdt
,
S.
Agarwal
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
Chem. Mater.
31
,
3878
(
2019
).
2.
M. F. J.
Vos
,
S. N.
Chopra
,
J. G.
Ekerdt
,
S.
Agarwal
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
J. Vac. Sci. Technol. A
ASD2020
,
032412
(
2020
).
3.
F.
Grillo
,
J.
Soethoudt
,
E. A.
Marques
,
L.
de Martín
,
K.
Van Dongen
,
J. R.
van Ommen
, and
A.
Delabie
,
Chem. Mater.
32
,
9560
(
2020
).
4.
G. N.
Parsons
and
R. D.
Clark
,
Chem. Mater.
32
,
4920
(
2020
).
5.
F. S.
Minaye Hashemi
,
B. R.
Birchansky
, and
S. F.
Bent
,
ACS Appl. Mater. Interfaces
8
,
33264
(
2016
).
6.
F. S.
Galasso
,
Chemical Vapor Deposited Materials
(
CRC
, Boca Raton,
1991
).
7.
A.
Sherman
,
Chemical Vapor Deposition for Microelectronics
(
Noyes Publications
,
Park Ridge
,
NJ
,
1987
).
8.
D. M.
Dobkin
and
M. K.
Zuraw
, Principles of Chemical Vapor Deposition (
Kluwer Academic
,
Dordrecht
, The Netherlands,
2003
).
9.
R.
Gaur
,
L.
Mishra
,
M. A.
Siddiqi
, and
B.
Atakan
,
RSC Adv.
4
,
33785
(
2014
).
11.
F.
Schreiber
,
Prog. Surf. Sci.
65
,
151
(
2000
).
12.
J. G.
Eden
,
Photochemical Vapor Deposition
(
John Wiley & Sons, Inc.
,
New York
,
1992
).
13.
K. R.
Johnson
,
P.
Arevalo Rodriguez
,
C. R.
Brewer
,
J. A.
Brannaka
,
Z.
Shi
,
J.
Yang
,
B.
Salazar
,
L.
McElwee-White
, and
A. V.
Walker
,
J. Chem. Phys.
146
,
052816
(
2017
).
14.
C. R.
Brewer
,
O. M.
Hawkins
,
N. C.
Sheehan
,
J. D.
Bullock
,
V. D.
Kleiman
,
A. V.
Walker
, and
L.
McElwee-White
,
Organometallics
38
,
4363
(
2019
).
15.
A.
Hooper
,
G. L.
Fisher
,
K.
Konstadinidis
,
D.
Jung
,
H.
Nguyen
,
R.
Opila
,
R. W.
Collins
,
N.
Winograd
, and
D. L.
Allara
,
J. Am. Chem. Soc.
121
,
8052
(
1999
).
16.
G. L.
Fisher
,
A. E.
Hooper
,
R. L.
Opila
,
D. L.
Allara
, and
N.
Winograd
,
J. Phys. Chem. B
104
,
3267
(
2000
).
17.
G. L.
Fisher
 et al.,
J. Am. Chem. Soc.
124
,
5528
-
5541
(
2002
).
18.
M. J.
Frisch
G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, GAUSSIAN 09, Revision A.09,
Gaussian, Inc.
,
Wallingford
,
CT
,
2009
.
19.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
20.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
21.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
22.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
23.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
24.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
25.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
).
26.
W. R.
Wadt
and
P. J.
Hay
,
J. Chem. Phys.
82
,
284
(
1985
).
27.
C. E.
Check
,
T. O.
Faust
,
J. M.
Bailey
,
B. J.
Wright
,
T. M.
Gilbert
, and
L. S.
Sunderlin
,
J. Phys. Chem. A
105
,
8111
(
2001
).
28.
C.
Adamo
and
D.
Jacquemin
,
Chem. Soc. Rev.
42
,
845
(
2013
).
29.
D. J.
Morgan
,
Surf. Interf. Anal.
47
,
1072
(
2015
).
30.
NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000) (retrieved July 1, 2021).
31.
B. D.
Ratner
and
D. G.
Castner
, in
Surface Analysis—The Principal Techniques
, 2nd ed., edited by
J. C.
Vickerman
and
I. S.
Gilmore
(
John Wiley & Sons Ltd
,
Chichester
,
2009
).
32.
R.
Forbes
 et al.,
J. Chem. Phys.
149
,
144302
(
2018
).
You do not currently have access to this content.