Cobalt and cobalt carbide films were successfully fabricated via a simple pulsed chemical vapor deposition (PCVD) technique. The PCVD process employs bis(1,4-di-tert-butyl-1,3-diazadienyl) cobalt as a cobalt precursor. The effect of the reducing agent, H2 gas or H2 plasma, on the chemical composition of the resulting films has been carefully investigated. In the presence of H2 gas, polycrystalline hexagonal close-packed Co was obtained through the thermal decomposition of the Co precursor. When H2 plasma was used as a coreactant, the cobalt carbide was successfully deposited instead. The crystal structure of the deposited film is orthorhombic Co2C. X-ray photoelectron spectroscopy and Raman spectroscopy results show that all the carbon contained in the films were in form of Co–C. The dependence of deposition temperature on cobalt and cobalt carbide characteristics has also been investigated.

1.
J.
García-Torres
,
E.
Gómez
, and
E.
Vallés
,
J. Appl. Electrochem.
39
,
233
(
2009
).
2.
N.
Chakroune
,
J. Mater. Chem.
13
,
312
(
2003
).
3.
H.
Kim
,
Microelectron. Eng.
106
,
69
(
2013
).
4.
T. D. M.
Elko-Hansen
,
A.
Dolocan
, and
J. G.
Ekerdt
,
J. Phys. Chem. Lett.
5
,
1091
(
2014
).
5.
J. A.
Hamilton
,
T.
Pugh
,
A. L.
Johnson
,
A. J.
Kingsley
, and
S. P.
Richards
,
Inorg. Chem.
55
,
7141
(
2016
).
6.
S.
Cobo
 et al.,
Nat. Mater.
11
,
802
(
2012
).
7.
Y.-H.
Zhao
,
H.-Y.
Su
,
K.
Sun
,
J.
Liu
, and
W.-X.
Li
,
Surf. Sci.
606
,
598
(
2012
).
8.
M.
Sarr
,
N.
Bahlawane
,
D.
Arl
,
M.
Dossot
,
E.
McRae
, and
D.
Lenoble
,
Appl. Surf. Sci.
379
,
523
(
2016
).
9.
M.
Zamanpour
,
S.
Bennett
,
P.
Taheri
,
Y.
Chen
, and
V. G.
Harris
,
J. Appl. Phys.
115
,
17A747
(
2014
).
10.
T. F.
Zhang
,
J. S.
Wu
,
Y. Q.
Xu
,
X. P.
Wang
,
J.
Ni
,
Y. W.
Li
, and
J. W.
Niemantsverdriet
,
Catal. Sci. Technol.
7
,
5893
(
2017
).
11.
A.
Rodriguez-Gomez
,
J. P.
Holgado
, and
A.
Caballero
,
ACS Catal.
7
,
5243
(
2017
).
12.
J. M.
Alameda
,
F.
Carmona
,
F. H.
Salas
,
L. M.
Alvarez-Prado
,
R.
Morales
, and
G. T.
Pérez
,
J. Magn. Magn. Mater.
154
,
249
(
1996
).
13.
Y. K.
Ko
 et al.,
Mater. Chem. Phys.
80
,
560
(
2003
).
14.
H.
Zhang
,
C.
Liang
,
J.
Liu
,
Z.
Tian
, and
G.
Shao
,
Carbon
55
,
108
(
2013
).
15.
16.
C.
Georgi
,
A.
Hildebrandt
,
T.
Waechtler
,
S. E.
Schulz
,
T.
Gessner
, and
H.
Lang
,
J. Mater. Chem. C
2
,
4676
(
2014
).
17.
M. M.
Kerrigan
,
J. P.
Klesko
, and
C. H.
Winter
,
Chem. Mater.
29
,
7458
(
2017
).
18.
J. P.
Klesko
,
M. M.
Kerrigan
, and
C. H.
Winter
,
Chem. Mater.
28
,
700
(
2016
).
19.
Y.
Gao
,
Y.
Shao
,
L.
Yan
,
H.
Li
,
Y.
Su
,
H.
Meng
, and
X.
Wang
,
Adv. Funct. Mater.
26
,
4456
(
2016
).
20.
Z.
Guo
and
X.
Wang
,
Angew. Chem. Int. Ed.
57
,
5898
(
2018
).
21.
S.
Yan
,
H.
Li
,
J.
Zhu
,
W.
Xiong
,
R.
Lei
, and
X.
Wang
,
Nanotechnology
32
,
275402
(
2021
).
22.
T. J.
Knisley
,
L. C.
Kalutarage
, and
C. H.
Winter
,
Coord. Chem. Rev.
257
,
3222
(
2013
).
23.
D. X.
Ye
,
S.
Pimanpang
,
C.
Jezewski
,
F.
Tang
,
J. J.
Senkevich
,
G. C.
Wang
, and
T. M.
Lu
,
Thin Solid Films
485
,
95
(
2005
).
24.
M. F. J.
Vos
,
G.
van Straaten
,
W. M. M. E.
Kessels
, and
A. J. M.
Mackus
,
J. Phys. Chem. C
122
,
22519
(
2018
).
25.
I. `K.
Oh
,
H.
Kim
, and
H. B. R.
Lee
,
Curr. Appl. Phys.
17
,
333
(
2017
).
26.
J.
Yang
,
K.
Li
,
J.
Feng
, and
R. G.
Gordon
,
J. Mater. Chem. C
3
,
12098
(
2015
).
27.
M. M.
Kerrigan
,
J. P.
Klesko
,
S. M.
Rupich
,
C. L.
Dezelah
,
R. K.
Kanjolia
,
Y. J.
Chabal
, and
C. H.
Winter
,
J. Chem. Phys.
146
,
052813
(
2017
).
28.
H.
Shimizu
,
K.
Sakoda
,
T.
Momose
,
M.
Koshi
, and
Y.
Shimogaki
,
J. Vac. Sci. Technol. A
30
,
01A144
(
2012
).
29.
K.
Kim
,
K.
Lee
,
S.
Han
,
W.
Jeong
, and
H.
Jeon
,
J. Electrochem. Soc.
154
,
H177
(
2007
).
30.
J.
Feng
,
X.
Gong
,
X.
Lou
, and
R. G.
Gordon
,
ACS Appl. Mater. Inter.
9
,
10914
(
2017
).
31.
Q.
Guo
,
Z.
Guo
,
J.
Shi
,
W.
Xiong
,
H.
Zhang
,
Q.
Chen
,
Z.
Liu
, and
X.
Wang
,
ACS Appl. Mater. Inter.
10
,
8384
(
2018
).
32.
Q.
Fan
,
L.
Sang
,
D.
Jiang
,
L.
Yang
,
H.
Zhang
,
Q.
Chen
, and
Z.
Liu
,
J. Vac. Sci. Technol. A
37
,
010904
(
2019
).
33.
Z.
Guo
,
H.
Li
,
Q.
Chen
,
L.
Sang
,
L.
Yang
,
Z.
Liu
, and
X.
Wang
,
Chem. Mater.
27
,
5988
(
2015
).
34.
Y.
Hu
,
X.
Tian
,
Q.
Fan
,
Z.
Wang
,
B.
Liu
,
L.
Yang
, and
Z.
Liu
,
Plasma Sci. Technol.
21
,
105502
(
2019
).
35.
Q.
Guo
,
Z.
Guo
,
J.
Shi
,
L.
Sang
,
B.
Gao
,
Q.
Chen
,
Z.
Liu
, and
X.
Wang
,
MRS Commun.
8
,
88
(
2018
).
36.
W.
Xiong
,
Q.
Guo
,
Z.
Guo
,
H.
Li
,
R.
Zhao
,
Q.
Chen
,
Z.
Liu
, and
X.
Wang
,
J. Mater. Chem. A
6
,
4297
(
2018
).
37.
X.
Tian
,
X.
Zhang
,
Y.
Hu
,
B.
Liu
,
Y.
Yuan
,
L.
Yang
,
Q.
Chen
, and
Z.
Liu
,
J. Mater. Res.
35
,
813
(
2019
).
38.
Z.
Zhang
,
Z.
Liu
,
L.
Yang
, and
Q.
Chen
,
Mater. Res. Express.
5
,
085025
(
2018
).
39.
Y.
Wang
,
H.
Qu
,
C.
Zhang
, and
Q.
Chen
,
Sci. Rep.
9
,
459
(
2019
).
40.
Z.
Guo
,
L.
Sang
,
Z.
Wang
,
Q.
Chen
,
L.
Yang
, and
Z.
Liu
,
Surf. Coat. Technol.
307
,
1059
(
2016
).
41.
H.
Zhang
,
Z.
Guo
,
Q.
Chen
,
X.
Wang
,
Z.
Wang
, and
Z.
Liu
,
Thin Solid Films
615
,
63
(
2016
).
42.
T.
Pugh
,
S. D.
Cosham
,
J. A.
Hamilton
,
A. J.
Kingsley
, and
A. L.
Johnson
,
Inorg. Chem.
52
,
13719
(
2013
).
43.
Q.
Fan
,
Z.
Guo
,
Z.
Li
,
Z.
Wang
,
L.
Yang
,
Q.
Chen
,
Z.
Liu
, and
X.
Wang
,
ACS Appl. Electron. Mater.
1
,
444
(
2019
).
44.
M.
Zheng
 et al.,
Appl. Phys. Lett.
96
,
063110
(
2010
).
45.
A. A.
El-Gendy
,
M.
Qian
,
Z. J.
Huba
,
S. N.
Khanna
, and
E. E.
Carpenter
,
Appl. Phys. Lett.
104
,
023111
(
2014
).
You do not currently have access to this content.