We report results of a combined experimental and computational model study on the interaction of the battery-relevant ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI) with a Mg thin film model electrode grown on a Ru(0001) substrate, which aims at a fundamental understanding of the solid electrolyte interphase formation at the electrode–electrolyte interface in postlithium batteries. Scanning tunneling microscopy, x-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy were employed for the characterization of the Mg thin film model electrode, revealing oxygen-free and atomically flat Mg films. Room temperature XPS measurements after vapor deposition of a (sub)monolayer of BMP-TFSI on the Mg film revealed the formation of a “contact layer” on Mg(0001), created by the reactive decomposition of the IL. In agreement with computationally determined core level binding energies of stable reaction products (dispersion corrected density functional theory calculations), we identified mainly inorganic MgF2-, MgO-, and MgS-like surface compounds, but also other more complex (Mg2+-free) F-, O-, and/or S-containing “TFSI-like” and carbon-containing adsorbed species. The deposition of higher IL amounts (up to 6 monolayers) results in the overgrowth of the direct “contact layer” by molecularly adsorbed BMP-TFSI. Heating of the adsorbate covered surface to around 470 K leads to desorption of multilayer BMP-TFSI and the partial desorption and transformation of adsorbed (Mg2+-free) “TFSI-like” decomposition products on the Mg substrate into MgF2-, MgO-, and MgS species or the respective adsorbed Fad, Oad, and Sad species.

1.
D.
Aurbach
,
Y.
Gofer
,
A.
Schechter
,
O.
Chusid
,
H.
Gizbar
,
Y.
Cohen
,
M.
Moshkovich
, and
R.
Turgeman
,
J. Power Sources
97-98
,
269
(
2001
).
2.
I.
Shterenberg
,
M.
Salama
,
Y.
Gofer
,
E.
Levi
, and
D.
Aurbach
,
MRS Bull.
39
,
453
(
2014
).
3.
R.
Mohtadi
and
F.
Mizuno
,
Beilstein J. Nanotechnol.
5
,
1291
(
2014
).
4.
C. B.
Bucur
,
T.
Gregory
,
A. G.
Oliver
, and
J.
Muldoon
,
J. Phys. Chem. Lett.
6
,
3578
(
2015
).
5.
Z.-K.
Zhirong
and
F.
Maximilian
,
MRS Commun.
7
,
770
(
2017
).
6.
7.
I.
Weber
,
J.
Ingenmey
,
J.
Schnaidt
,
B.
Kirchner
, and
R. J.
Behm
,
ChemElectroChem
8
,
390
(
2021
).
8.
J.
Muldoon
,
C. B.
Bucur
, and
T.
Gregory
,
Angew. Chem., Int. Ed.
56
,
12064
(
2017
).
9.
P.
Verma
,
P.
Maire
, and
P.
Novák
,
Electrochim. Acta
55
,
6332
(
2010
).
10.
E.
Peled
,
D.
Golodnitsky
, and
G.
Ardel
,
J. Electrochem. Soc.
144
,
L208
(
1997
).
11.
M.
Gauthier
 et al.,
J. Phys. Chem. Lett.
6
,
4653
(
2015
).
12.
Z.
Lu
,
A.
Schechter
,
M.
Moshkovich
, and
D.
Aurbach
,
J. Electroanal. Chem.
466
,
203
(
1999
).
13.
D.
Aurbach
,
Z.
Lu
,
A.
Schechter
,
Y.
Gofer
,
H.
Gizbar
,
R.
Turgeman
,
Y.
Cohen
,
M.
Moshkovich
, and
E.
Levi
,
Nature
407
,
724
(
2000
).
14.
R. E.
Doe
,
R.
Han
,
J.
Hwang
,
A. J.
Gmitter
,
I.
Shterenberg
,
H. D.
Yoo
,
N.
Pour
, and
D.
Aurbach
,
Chem. Commun.
50
,
243
(
2014
).
15.
T. S.
Arthur
 et al.,
Chem. Mater.
29
,
7183
(
2017
).
16.
T.
Gao
 et al.,
ACS Appl. Mater. Interfaces
10
,
14767
(
2018
).
17.
R.
Jay
,
A. W.
Tomich
,
J.
Zhang
,
Y.
Zhao
,
A.
De Gorostiza
,
V.
Lavallo
, and
J.
Guo
,
ACS Appl. Mater. Interfaces
11
,
11414
(
2019
).
19.
P.
Wasserscheid
and
W.
Keim
,
Angew. Chem., Int. Ed.
39
,
3772
(
2000
).
20.
N. V.
Plechkova
and
K. R.
Seddon
,
Chem. Soc. Rev.
37
,
123
(
2008
).
21.
M.
Smiglak
,
J. M.
Pringle
,
X.
Lu
,
L.
Han
,
S.
Zhang
,
H.
Gao
,
D. R.
MacFarlane
, and
R. D.
Rogers
,
Chem. Commun.
50
,
9228
(
2014
).
22.
M.
Armand
,
F.
Endres
,
D. R.
MacF
,
H.
Ohno
, and
B.
Scrosati
,
Nat. Mater.
8
,
621
(
2009
).
23.
M.
Armand
and
J.-M.
Tarascon
,
Nature
451
,
652
(
2008
).
24.
A.
Lewandowski
and
A.
Swiderska-Mocek
,
J. Power Sources
194
,
601
(
2009
).
25.
G. A.
Giffin
,
J. Mater. Chem. A
4
,
13378
(
2016
).
26.
M.
Kar
,
Z.
Ma
,
L. M.
Azofra
,
K.
Chen
,
M.
Forsyth
, and
D. R.
MacFarlane
,
Chem. Commun.
52
,
4033
(
2016
).
27.
F.
Buchner
,
B.
Uhl
,
K.
Forster-Tonigold
,
J.
Bansmann
,
A.
Groß
, and
R. J.
Behm
,
J. Chem. Phys.
148
,
193821
(
2018
).
28.
T.
Diemant
,
T.
Hager
,
H. E.
Hoster
,
H.
Rauscher
, and
R. J.
Behm
,
Surf. Sci.
541
,
137
(
2003
).
29.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
21
,
165
(
1994
).
30.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy
(
Perkin Elmer
,
Eden Prairie, MN
,
1992
).
31.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
32.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
33.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
34.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
35.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
36.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
37.
J. D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys
10
,
6615
(
2008
).
38.
G.
Mercurio
 et al.,
Phys. Rev. Lett.
104
,
036102
(
2010
).
39.
K.
Tonigold
and
A.
Groß
,
J. Comput. Chem.
33
,
695
(
2012
).
40.
L.
Köhler
and
G.
Kresse
,
Phys. Rev. B
70
,
165405
(
2004
).
41.
F.
Buchner
,
K.
Forster-Tonigold
,
M.
Bozorgchenani
,
A.
Gross
, and
R. J.
Behm
,
J. Phys. Chem. Lett.
7
,
226
(
2016
).
42.
K.
Forster-Tonigold
,
F.
Buchner
,
J.
Bansmann
,
R. J.
Behm
, and
A.
Groß
, (in press) (2022).
43.
H.
Over
,
T.
Hertel
,
H.
Bludau
,
S.
Pflanz
, and
G.
Ertl
,
Phys. Rev. B
48
,
5572
(
1993
).
44.
S.
Schwegmann
,
H.
Over
,
M.
Gierer
, and
G.
Ertl
,
Phys. Rev. B
53
,
11164
(
1996
).
45.
T.
Herranz
,
B.
Santos
,
K. F.
McCarthy
, and
J.
de la Figuera
,
Surf. Sci.
605
,
903
(
2011
).
46.
C. J.
Powell
and
A.
Jablonski
,
NIST Electron Inelastic-Mean-Free-Path Database
, 1st ed (
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2000
).
47.
L.
Aballe
,
A.
Barinov
,
A.
Locatelli
,
T. O.
Mentes
, and
M.
Kiskinova
,
Phys. Rev. B
75
,
115411
(
2007
).
48.
C. D.
Wagner
and
P.
Biloen
,
Surf. Sci.
35
,
82
(
1973
).
49.
P.
Hofmann
and
D.
Menzel
,
Surf. Sci
152-153
,
382
(
1985
).
50.
A.
Böttcher
and
H.
Niehus
,
Phys. Rev. B
60
,
14396
(
1999
).
51.
J.
Kim
,
F.
Buchner
, and
R. J.
Behm
,
J. Phys. Chem. C
124
,
21476
(
2020
).
52.
B. E.
Hayden
,
E.
Schweizer
,
R.
Kötz
, and
A. M.
Bradshaw
,
Surf. Sci.
111
,
26
(
1981
).
53.
F.
Buchner
,
K.
Forster-Tonigold
,
B.
Uhl
,
D.
Alwast
,
N.
Wagner
,
A.
Groß
, and
R. J.
Behm
,
ACS Nano
7
,
7773
(
2013
).
54.
F.
Buchner
,
J.
Kim
,
C.
Adler
,
M.
Bozorgchenani
,
J.
Bansmann
, and
R. J.
Behm
,
J. Phys. Chem. Lett.
8
,
5804
(
2017
).
55.
F.
Buchner
,
K.
Forster-Tonigold
,
J.
Kim
,
C.
Adler
,
J.
Bansmann
,
A.
Groß
, and
R. J.
Behm
,
J. Phys. Chem. C
122
,
18968
(
2018
).
56.
F. R.
McFeely
,
J. F.
Morar
, and
F. J.
Himpsel
,
Surf. Sci.
165
,
277
(
1986
).
57.
Y.
Li
,
P.
Zuo
,
R.
Li
,
H.
Huo
,
Y.
Ma
,
C.
Du
,
Y.
Gao
,
G.
Yin
, and
R. S.
Weatherup
,
ACS Appl. Mater. Interfaces
13
,
24565
(
2021
).
58.
S.
Mertin
,
L.
Marot
,
C. S.
Sandu
,
R.
Steiner
,
J.-L.
Scartezzini
, and
P.
Muralt
,
Adv. Eng. Mater.
17
,
1652
(
2015
).
59.
V.
Fournier
,
P.
Marcus
, and
I.
Olefjord
,
Surf. Interface Anal.
34
,
494
(
2002
).
60.
F.
Khairallah
and
A.
Glisenti
,
Surf. Sci. Spectra
13
,
58
(
2006
).
61.
A. U.
Goonewardene
,
J.
Karunamuni
,
R. L.
Kurtz
, and
R. L.
Stockbauer
,
Surf. Sci.
501
,
102
(
2002
).
62.
R.
Streber
,
C.
Papp
,
M.
Lorenz
,
A.
Bayer
,
R.
Denecke
, and
H. P.
Steinrück
,
Angew. Chem., Int. Ed.
48
,
9743
(
2009
).
63.
T.
Cremer
,
M.
Stark
,
A.
Deyko
,
H. P.
Steinrück
, and
F.
Maier
,
Langmuir
27
,
3662
(
2011
).
64.
C. D.
Wagner
,
L. E.
Davis
,
M. V.
Zeller
,
J. A.
Taylor
,
R. H.
Raymond
, and
L. H.
Gale
,
Surf. Interface Anal.
3
,
211
(
1981
).
65.
P. C.
Howlett
,
E. I.
Izgorodina
,
M.
Forsyth
, and
D. R.
MacFarlane
,
Z. Phys. Chem.
220
,
1483
(
2006
).
66.
Y.
Preibisch
,
F.
Horsthemke
,
M.
Winter
,
S.
Nowak
, and
A. S.
Best
,
Chem. Mater.
32
,
2389
(
2020
).
67.
K.
Forster-Tonigold
,
J.
Kim
,
J.
Bansmann
,
A.
Groß
, and
F.
Buchner
,
ChemPhysChem
22
,
441
(
2021
).
68.
H.
Liu
,
G.
Gao
,
Y.
Li
,
J.
Hao
, and
J. S.
Tse
,
J. Phys. Chem. C
119
,
23168
(
2015
).
69.
P.
Karen
,
A.
Kjekshus
,
Q.
Huang
, and
V. L.
Karen
,
J. Alloys Compd.
282
,
72
(
1999
).
70.
H.
Fjellvaag
and
P.
Karen
,
Inorg. Chem.
31
,
3260
(
1992
).
71.
O. O.
Kurakevych
,
T. A.
Strobel
,
D. Y.
Kim
, and
G. D.
Cody
,
Angew. Chem., Int. Ed.
52
,
8930
(
2013
).
72.
N. N.
Rajput
,
X.
Qu
,
N.
Sa
,
A. K.
Burrell
, and
K. A.
Persson
,
J. Am. Chem. Soc.
137
,
3411
(
2015
).
73.
B. V.
Merinov
 et al.,
J. Phys. Chem. Lett.
10
,
4577
(
2019
).
74.
X. D.
Peng
,
D. S.
Edwards
, and
M. A.
Barteau
,
Surf. Sci.
195
,
103
(
1988
).
75.
D.
Höche
,
C.
Blawert
,
M.
Cavellier
,
D.
Busardo
, and
T.
Gloriant
,
Appl. Surf. Sci.
257
,
5626
(
2011
).
76.
A. S.
Ingason
,
A. K.
Eriksson
,
E.
Lewin
,
J.
Jensen
, and
S.
Olafsson
,
Thin Solid Films
518
,
4225
(
2010
).
77.
Y. V.
Larichev
,
B. L.
Moroz
,
V. I.
Zaikovskii
,
S. M.
Yunusov
,
E. S.
Kalyuzhnaya
,
V. B.
Shur
, and
V. I.
Bukhtiyarov
,
J. Phys. Chem. C
111
,
9427
(
2007
).
78.
D. K.
Aswal
,
K. P.
Muthe
,
S.
Tawde
,
S.
Chodhury
,
N.
Bagkar
,
A.
Singh
,
S. K.
Gupta
, and
J. V.
Yakhmi
,
J. Cryst. Growth
236
,
661
(
2002
).
79.
J. C.
Fuggle
,
L. M.
Watson
,
D. J.
Fabian
, and
S.
Affrossman
,
Surf. Sci.
49
,
61
(
1975
).
80.
H.
Seyama
and
M.
Soma
,
J. Chem. Soc., Faraday Trans.
80
,
237
(
1984
).
82.
C. D.
Wagner
,
J. Electron Spectrosc. Relat. Phenom.
18
,
345
(
1980
).
83.
H. F.
Franzen
,
M. X.
Umaña
,
J. R.
McCreary
, and
R. J.
Thorn
,
J. Solid State Chem.
18
,
363
(
1976
).
84.
See supplementary material at https://doi.org/10.1116/6.0001658 for Tables S1–S4 where data on XP intensities, binding energies, atomic sensitivity factors (ASFs), as well as the related elemental concentrations are collected and for Figs. S1 and S2 showing additional XP spectra recorded after deposition of BMP-TFSI on HOPG for comparison and top views of the calculated adsorption structures of BMP-TFSI as well as decomposition products on Mg(0001).

Supplementary Material

You do not currently have access to this content.