Thermal atomic layer etching (ALE) was studied in HfO2-based 3D NAND test structures with an aspect ratio of more than 50:1. Etching was performed via ligand exchange with dimethyl-aluminum chloride (DMAC) after surfaces had been fluorinated with hydrogen fluoride (HF). In these 3D NAND structures, we found that the horizontal etch rate of HfO2 as a function of depth (depth loading) depended on the DMAC dosing but was nearly independent of the HF dose. The HF dose and the process pressure were keys to increasing the overall etch amount per cycle. With the highest tested HF dose of 192 Torr s and a total process pressure of 8 Torr, we achieved a uniform etch amount of 0.6 nm per cycle. In addition, we investigated the impact of film quality and film coating conformality in these structures on the depth loading in the succeeding ALE processes. The type of precursor, precursor dosing, deposition rate, and substrate temperature played a fundamental role in controlling the film quality and conformality of the deposited HfO2 layers inside high aspect ratio holes. Fluorination studies on blanket films revealed that fluorination efficiency is improving for pressures in the Torr range compared to previous milliTorr experiments and that only temperatures above 250 °C increased the fluorine concentration in HfO2 significantly, whereas fluorine levels were unchanged between 150 and 250 °C.
Skip Nav Destination
Control of etch profiles in high aspect ratio holes via precise reactant dosing in thermal atomic layer etching
Article navigation
March 2022
Research Article|
February 04 2022
Control of etch profiles in high aspect ratio holes via precise reactant dosing in thermal atomic layer etching
Special Collection:
Atomic Layer Etching (ALE)
Andreas Fischer;
Andreas Fischer
a)
Lam Research Corporation
, 4400 Cushing Parkway, Fremont, California 94538
Search for other works by this author on:
Aaron Routzahn;
Aaron Routzahn
Lam Research Corporation
, 4400 Cushing Parkway, Fremont, California 94538
Search for other works by this author on:
Ryan J. Gasvoda
;
Ryan J. Gasvoda
Lam Research Corporation
, 4400 Cushing Parkway, Fremont, California 94538
Search for other works by this author on:
Jim Sims;
Jim Sims
Lam Research Corporation
, 4400 Cushing Parkway, Fremont, California 94538
Search for other works by this author on:
Thorsten Lill
Thorsten Lill
Lam Research Corporation
, 4400 Cushing Parkway, Fremont, California 94538
Search for other works by this author on:
a)
Electronic mail: andreas.fischer@lamresearch.com
Note: This paper is part of the 2022 Special Topic Collection on Atomic Layer Etching (ALE)
J. Vac. Sci. Technol. A 40, 022603 (2022)
Article history
Received:
December 13 2021
Accepted:
January 13 2022
Citation
Andreas Fischer, Aaron Routzahn, Ryan J. Gasvoda, Jim Sims, Thorsten Lill; Control of etch profiles in high aspect ratio holes via precise reactant dosing in thermal atomic layer etching. J. Vac. Sci. Technol. A 1 March 2022; 40 (2): 022603. https://doi.org/10.1116/6.0001691
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00