In this study, an atomic layer etching (ALE) process for molybdenum was developed in two steps: plasma oxidation and plasma chlorination. In the plasma oxidation step, molybdenum was oxidized with oxygen plasma to form molybdenum oxide. As the plasma oxidation time increased, the atomic ratio of O-to-Mo, determined by x-ray photoelectron spectroscopy, increased, and then saturated to a value of 2.3. The oxidation depth of molybdenum was found to increase with increasing oxidation temperature—from 3.0 nm at 40 °C to 22.0 nm at 300 °C. It also increased with increasing RF (radio frequency) power—from 2.0 nm at 5 W to 5.5 nm at 25 W. In the plasma chlorination step, it is believed that molybdenum oxide was removed from the surface by forming molybdenum oxychloride (MoOCl2, MoOCl4, and MoO2Cl2) in chlorine plasma in the temperature range of 40–300 °C. The etch per cycle (EPC) continuously increased at temperatures above 100 °C; however, at temperatures below 40 °C, it was saturated. The RF power increased the EPC from 2.2 to 5.8 nm/cycle in the range of 5–25 W. It was found that the removal depth matched the oxidation depth at each RF power in ALE at 40 °C. The atomic composition of molybdenum after ALE was almost identical to that before ALE. This study demonstrates that the ALE of molybdenum at 40 °C can be realized by sequential plasma oxidation and chlorination.

1.
A.
Mallik
 et al 
2017 IEEE International Electron Devices Meeting (IEDM)
,
San Francisco, CA, USA
,
2–6 December 2017
(
IEEE
,
New York
,
2017
), p.
32.1.1
.
2.
K.
Lee
,
I.
Nam
,
I.
Kwon
,
J.
Gil
,
K.
Han
,
S.
Park
, and
B. I.
Seo
,
IEEE Trans. Electron Devices
52
,
1415
(
2005
).
3.
J. W.
Ko
,
G.
Baek
, and
W. Y.
Choi
,
IEEE Trans. Electron Devices
67
,
3861
(
2020
).
4.
K.
Rose
and
M.
Ramon
,
IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop
,
Boston, MA, USA
,
23–25 September 1998
(
IEEE
,
New York
,
1998
), p.
347
.
5.
A.
Naeemi
,
A.
Ceyhan
,
V.
Kumar
,
C.
Pan
,
R. M.
Iraei
, and
S.
Rakheja
,
2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)
,
San Francisco, CA, USA
,
1–5 June 2014
(
IEEE
,
New York
,
2014
), p.
1
.
6.
K.
Fuchs
,
Math. Proc. Cambridge
34
,
100
(
2008
).
7.
W.
Zhang
,
S. H.
Brongersma
,
O.
Richard
,
B.
Brijs
,
R.
Palmans
,
L.
Froyen
, and
K.
Maex
,
Microelectron. Eng
76
,
146
(
2004
).
8.
D.
Gall
,
2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA)
,
Hsinchu, Taiwan
,
10–13 August 2020
(
IEEE
,
New York
,
2020
), p.
112
.
9.
A.
Ceyhan
and
A.
Naeemi
,
IEEE Trans. Electron Devices
60
,
374
(
2013
).
10.
Y.
Hanaoka
,
K.
Hinode
,
K. I.
Takeda
, and
D.
Kodama
,
Mater. Trans.
43
,
1621
(
2002
).
11.
C.
Pan
and
A.
Naeemi
,
IEEE Electron Device Lett.
35
,
250
(
2014
).
12.
M. R.
Baklanov
,
C.
Adelmann
,
L.
Zhao
, and
S.
De Gendt
,
ECS J. Solid State Sci. Technol.
4
,
Y1
(
2014
).
13.
W.
Steinhögl
,
G.
Schindler
,
G.
Steinlesberger
,
M.
Traving
, and
M.
Engelhardt
,
J. Appl. Phys.
97
,
023706
(
2005
).
14.
E. H.
Sondheimer
,
Adv. Phys.
50
,
499
(
2001
).
15.
A. F.
Mayadas
and
M.
Shatzkes
,
Phys. Rev. B
1
,
1382
(
1970
).
16.
A.
Naeemi
and
J. D.
Meindl
,
2008 International Interconnect Technology Conference
,
Burlingame, CA, USA
,
1–4 June 2008
(
IEEE
,
New York
,
2008
), p.
183
.
17.
C.
Adelmann
 et al 
IEEE International Interconnect Technology Conference
,
San Jose, CA, USA
,
20–23 May 2014
(
IEEE
,
New York
,
2014
), p.
173
.
18.
D.
Choi
,
Nanosci. Nanotechnol. Lett.
10
,
1310
(
2018
).
19.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
17
,
911
(
1991
).
20.
D.
Gall
,
J. Appl. Phys.
119
,
085101
(
2016
).
21.
H.
Rashid
,
K. S.
Rahman
,
M. I.
Hossain
,
A. A.
Nasser
,
F. H.
Alharbi
,
M.
Akhtaruzzaman
, and
N.
Amin
,
Results Phys.
14
,
102515
(
2019
).
22.
K.
Tanwar
,
D.
Canaperi
,
M.
Lofaro
,
W.-T.
Tseng
,
R.
Patlolla
,
C.
Penny
, and
C.
Waskiewicz
,
J. Electrochem. Soc.
160
,
D3247
(
2013
).
23.
M. R.
Baklanov
,
P. S.
Ho
, and
E.
Zschech
,
Advanced Interconnects for USLI Technology
(
Wiley
,
New York, USA
,
2012
).
24.
Y.-L.
Cheng
,
C.-Y.
Lee
, and
Y.-L.
Huang
,
Noble and Precious Metals—Properties, Nanoscale Effects and Applications
, edited by
S. M.
Seehra
and
D. A.
Bristow
(
IntechOpen
,
London
,
2018
).
25.
T.-Y.
Kwon
,
M.
Ramachandran
, and
J.-G.
Park
,
Friction
1
,
279
(
2013
).
26.
S.-J.
Park
,
C.
Sun
,
J.
Yeh
,
J.
Cataldo
, and
N.
Metropoulos
,
Mater. Res. Soc. Symp.
68
,
65
(
1986
).
27.
T.
Ono
,
M.
Oda
,
C.
Takahashi
, and
S.
Matsuo
,
J. Vac. Sci. Technol. B
4
,
696
(
1986
).
28.
Y.
Kurogi
and
K.
Kamimura
,
Jpn. J. Appl. Phys.
21
,
168
(
1982
).
29.
S.-J.
Park
,
C.
Sun
, and
R. J.
Purtell
,
J. Vac. Sci. Technol. B
5
,
1372
(
1987
).
30.
T. P.
Chow
and
A. J.
Steckl
,
J. Appl. Phys.
53
,
5531
(
1982
).
31.
R.
Brown
,
M.-L.
Ger
, and
T.
Nguyen
,
IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots
,
Napa Valley, CA, USA
, 11–14 February 1990 (
IEEE
,
New York
,
1990
), p.
77
.
32.
A.
Bensaoula
,
J. C.
Wolfe
,
J. A.
Oro
, and
A.
Ignatiev
,
Appl. Phys. Lett.
42
,
122
(
1983
).
33.
Y.
Kuo
,
J. Electrochem. Soc.
137
,
1907
(
1990
).
34.
J.
Hu
,
Y.
Zhang
,
S.
Chen
,
S.
He
,
N.
Li
, and
J.
Chen
,
2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)
,
Paris, France
, 29 January–2 February 2012 (
IEEE
,
New York
,
2012
), p.
267
.
35.
M.
Cao
,
X.
Li
,
M.
Missous
, and
I.
Thayne
,
Microelectron. Eng.
140
,
56
(
2015
).
36.
J.
Sharma
,
S. N.
Fernando
,
W.
Deng
,
N.
Singh
, and
W. M.
Tan
,
J. Micromech. Microeng.
23
,
075025
(
2013
).
37.
M. L.
Schattenburg
,
I.
Plotnik
, and
H. I.
Smith
,
J. Vac. Sci. Technol. B
3
,
272
(
1985
).
38.
A.
Picard
and
G.
Turban
,
Plasma Chem. Plasma
5
,
333
(
1983
).
39.
T.
Hosoya
,
S. I.
Ohfuji
, and
T.
Shibata
,
J. Electrochem. Soc.
131
,
1135
(
1984
).
40.
D.-C.
Shin
,
K.-S.
Park
,
B.-R.
Park
,
H.
Choe
,
J.-H.
Jeon
,
K.-W.
Lee
, and
J. H.
Seo
,
Curr. Appl. Phys.
11
,
S45
(
2011
).
41.
R. J.
Saia
and
B.
Gorowitz
,
J. Electrochem. Soc.
135
,
2795
(
1988
).
42.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
43.
C. M.
Huard
,
Y.
Zhang
,
S.
Sriraman
,
A.
Paterson
,
K. J.
Kanarik
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
35
,
031306
(
2017
).
44.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci. Technol.
4
,
N5041
(
2015
).
45.
X.
Lin
,
M.
Chen
, and
A.
Janotti
,
J. Vac. Sci. Technol. A
36
,
051401
(
2018
).
46.
M.
Konh
,
C.
He
,
X.
Lin
,
X.
Guo
,
V.
Pallem
,
R. L.
Opila
,
A. V.
Teplyakov
,
Z.
Wang
, and
B.
Yuan
,
J. Vac. Sci. Technol. A
37
,
021004
(
2019
).
47.
S. M.
George
,
Acc. Chem. Res.
53
,
1151
(
2020
).
48.
A.
Fischer
,
A.
Routzahn
,
S. M.
George
, and
T.
Lill
,
J. Vac. Sci. Technol. A
39
,
030801
(
2021
).
49.
J. K.-C.
Chen
,
N. D.
Altieri
,
T.
Kim
,
T.
Lill
,
M.
Shen
, and
J. P.
Chang
,
J. Vac. Sci. Technol. A
35
,
05C304
(
2017
).
50.
J. K.-C.
Chen
,
N. D.
Altieri
,
T.
Kim
,
E.
Chen
,
T.
Lill
,
M.
Shen
, and
J. P.
Chang
,
J. Vac. Sci. Technol. A
35
,
05C305
(
2017
).
51.
M.
Rasadujjaman
,
Y.
Nakamura
,
M.
Watanabe
,
E.
Kondoh
, and
M. R.
Baklanov
,
Microelectron. Eng.
153
,
5
(
2016
).
52.
E.
Mohimi
,
X. I.
Chu
,
B. B.
Trinh
,
S.
Babar
,
G. S.
Girolami
, and
J. R.
Abelson
,
ECS J. Solid State Sci. Technol.
7
,
P491
(
2018
).
53.
N. D.
Altieri
,
J. K.-C.
Chen
,
L.
Minardi
, and
J. P.
Chang
,
J. Vac. Sci. Technol. A
35
,
05C203
(
2017
).
54.
Y.
Lee
and
S. M.
George
,
Chem. Mater.
29
,
8202
(
2017
).
55.
N. R.
Johnson
and
S. M.
George
,
ACS Appl. Mater. Interfaces
9
,
34435
(
2017
).
56.
J.
Baltrusaitis
,
B.
Mendoza-Sanchez
,
V.
Fernandez
,
R.
Veenstra
,
N.
Dukstiene
,
A.
Roberts
, and
N.
Fairley
,
Appl. Surf. Sci.
326
,
151
(
2015
).
57.
J.-G.
Choi
and
L. T.
Thompson
,
Appl. Surf. Sci.
93
,
143
(
1996
).
58.
L. D.
López-Carreñ
,
G.
Benítez
,
L.
Viscido
,
J. M.
Heras
,
F.
Yubero
,
J. P.
Espinós
, and
A. R.
González-Elipe
,
Surf. Sci.
402–404
,
174
(
1998
).
59.
S.
Yan
,
H.
Wang
,
S.
Luo
,
D.
Wang
,
J.
Gong
,
P.
Luo
,
M.
Tang
, and
X.
Zheng
,
Mater. Lett.
276
,
128227
(
2020
).
60.
G.
Greczynski
and
L.
Hultman
,
Prog. Mater. Sci.
107
,
100591
(
2020
).
61.
S.
Tei
,
M.
Hirotoshi
,
S.
Tatsuya
,
F.
Yasuhiko
, and
K.
Kiyoshi
,
J. Plasma Fusion Res.
78
,
3
(
2002
).
62.
D. S.
Fischl
and
D. W.
Hess
,
J. Vac. Sci. Technol. B
6
,
1577
(
1988
).
63.
H. W.
Gäggeler
and
A.
Türler
,
The Chemistry of Superheavy Elements
, edited by
M.
Schädel
(
Kluwer Academic
, Boston,
2003
), p.
237
.
64.
V. A.
Volkovich
,
A. B.
Ivanov
,
R. V.
Kamalov
,
D. S.
Maltsev
,
B. D.
Vasin
, and
T. R.
Griffiths
,
J. Electrochem. Soc.
164
,
H5336
(
2017
).
65.
J.
Schmitz
,
Surf. Coat. Technol.
343
,
83
(
2018
).
66.
G.
Greczynski
and
L.
Hultman
,
ChemPhysChem
18
,
1507
(
2017
).
You do not currently have access to this content.