Room-temperature atomic layer deposition (RT-ALD) of iron oxide is developed with a precursor of bis(N, N′-diisopropyl-propionamidinate)iron [(DIPPA)2Fe] and plasma excited humidified Ar. Saturated conditions of (DIPPA)2Fe and plasma excited humidified Ar exposures at room temperature (23–25 °C) are investigated by in situ IR absorption spectroscopy for finding the RT-ALD process condition. Using the designated process, the growth per cycle of the iron oxide RT-ALD is confirmed as 0.15 nm/cycle based on the film thicknesses measured by the spectroscopic ellipsometer. The x-ray photoelectron spectroscopy suggests that the stoichiometry of the deposited iron oxide is closed to that of Fe2O3. The grown film is composed of partly crystallized iron oxides, confirmed by cross-sectional TEM and AFM. The RT deposited iron oxide exhibits a magnetic volume susceptibility of 1.52, which implies the applicability of the present coating for magnetic drug delivery. We discuss the surface reaction with the IR absorption spectroscopy and the quartz crystal microbalance. The (DIPPA)2Fe molecule is suggested to adsorb on the Fe2O3 surface with mixed first- and second-order reactions at RT. It is also suggested that amidinate ligands in (DIPPA)2Fe are released in the course of the adsorption and the remaining ligands are oxidized by the plasma excited humidified Ar. The RT iron oxide deposition is demonstrated, and the reaction mechanism of room-temperature ALD is discussed in this paper.

1.
R.
Qin
,
L.
Hao
,
J.
Li
,
Y.
Zhu
, and
Z.
Qi
,
Cryst. Res. Technol.
53
,
1800165
(
2018
).
2.
T.
Hisatomi
,
H.
Dotan
,
M.
Stefik
,
K.
Sivula
,
A.
Rothschild
,
M.
Grätzel
, and
N.
Mathews
,
Adv. Mater.
24
,
2699
(
2012
).
3.
J.-W.
Jang
 et al.,
Nat. Commun.
6
,
7447
(
2015
).
4.
C. D.
Powell
,
A. W.
Lounsbury
,
Z. S.
Fishman
,
C. L.
Coonrod
,
M. J.
Gallagher
,
D.
Villagran
,
J. B.
Zimmerman
,
L. D.
Pfefferle
, and
M. S.
Wong
,
Nano Converg.
8
,
8
(
2021
).
5.
A. B. F.
Martinson
,
M. J.
DeVries
,
J. A.
Libera
,
S. T.
Christensen
,
J. T.
Hupp
,
M. J.
Pellin
, and
J. W.
Elam
,
J. Phys. Chem. C
115
,
4333
(
2011
).
6.
C. M.
Hung
,
N. D.
Hoa
,
N. V.
Duy
,
N. V.
Toan
,
D. T. T.
Le
, and
N. V.
Hieu
,
J. Sci.: Adv. Mater. Devices
1
,
45
(
2016
).
7.
A. K.
Gupta
and
M.
Gupta
,
Biomaterials
26
,
3995
(
2005
).
8.
S.
Takeda
,
F.
Mishima
,
B.
Terazono
,
Y.
Izumi
, and
S.
Nishijima
,
Sci. Technol. Adv. Mater.
7
,
308
(
2006
).
9.
L.
Mohammed
,
H. G.
Gomaa
,
D.
Ragab
, and
J.
Zhu
,
Particuology
30
,
1
(
2017
).
10.
Z.
Hubička
,
Š
Kment
,
J.
Olejníček
,
M.
Čada
,
T.
Kubart
,
M.
Brunclíková
,
P.
Kšírová
,
P.
Adámek
, and
Z.
Remeš
,
Thin Solid Films
549
,
184
(
2013
).
11.
A.
Watanabe
and
H.
Kozuka
,
J. Phys. Chem. B
107
,
12713
(
2003
).
12.
D.
Peeters
 et al.,
Phys. Status Solidi A
211
,
316
(
2014
).
13.
H. G.
Cha
,
C. W.
Kim
,
Y. H.
Kim
,
M. H.
Jung
,
E. S.
Ji
,
B. K.
Das
,
J. C.
Kim
, and
Y. S.
Kang
,
Thin Solid Films
517
,
1853
(
2009
).
14.
J. W.
Elam
,
D.
Routkevitch
,
P. P.
Mardilovich
, and
S. M.
George
,
Chem. Mater.
15
,
3507
(
2003
).
15.
M.
Degai
,
K.
Kanomata
,
K.
Momiyama
,
S.
Kubota
,
K.
Hirahara
, and
F.
Hirose
,
Thin Solid Films
525
,
73
(
2012
).
16.
K.
Kanomata
,
P.
Pansila
,
B.
Ahmmad
,
S.
Kubota
,
K.
Hirahara
, and
F.
Hirose
,
Appl. Surf. Sci.
308
,
328
(
2014
).
17.
K.
Kanomata
,
K.
Tokoro
,
T.
Imai
,
P.
Pansila
,
M.
Miura
,
B.
Ahmmad
,
S.
Kubota
,
K.
Hirahara
, and
F.
Hirose
,
Appl. Surf. Sci.
387
,
497
(
2016
).
18.
K.
Yoshida
,
K.
Tokoro
,
K.
Kanomata
,
M.
Miura
,
K.
Saito
,
B.
Ahmmad
,
S.
Kubota
, and
F.
Hirose
,
J. Vac. Sci. Technol. A
37
,
060901
(
2019
).
19.
S. C.
Riha
,
J. M.
Racowski
,
M. P.
Lanci
,
J. A.
Klug
,
A. S.
Hock
, and
A. B. F.
Martinson
,
Langmuir
29
,
3439
(
2013
).
20.
J.
Bachmann
,
Jing
,
M.
Knez
,
S.
Barth
,
H.
Shen
,
S.
Mathur
,
U.
Gösele
, and
K.
Nielsch
,
J. Am. Chem. Soc.
129
,
9554
(
2007
).
21.
J. R.
Avila
,
D. W.
Kim
,
M.
Rimoldi
,
O. K.
Farha
, and
J. T.
Hupp
,
ACS Appl. Mater. Interfaces
7
,
16138
(
2015
).
22.
K.
Kikuchi
,
M.
Miura
,
K.
Kanomata
,
B.
Ahmmad
,
S.
Kubota
, and
F.
Hirose
,
J. Vac. Sci. Technol. A
35
,
01B121
(
2017
).
23.
F.
Hirose
,
Y.
Kinoshita
,
K.
Kanomata
,
K.
Momiyama
,
S.
Kubota
,
K.
Hirahara
,
Y.
Kimura
, and
M.
Niwano
,
Appl. Surf. Sci.
258
,
7726
(
2012
).
24.
M.
Niwano
,
J.
Kageyama
,
K.
Kinashi
, and
N.
Miyamoto
,
J. Vac. Sci. Technol. A
12
,
465
(
1994
).
25.
J.
Kwon
,
M.
Dai
,
M. D.
Halls
,
E.
Langereis
,
Y. J.
Chabal
, and
R. G.
Gordon
,
J. Phys. Chem. C
113
,
654
(
2009
).
26.
D.
Peeters
 et al.,
Adv. Mater. Interfaces
4
,
1700155
(
2017
).
27.
J.
Zhang
,
X.
Liu
,
X.
Guo
,
S.
Wu
, and
S.
Wang
,
Chem. Eur. J.
16
,
8108
(
2010
).
28.
G. S.
Parkinson
,
Surf. Sci. Rep.
71
,
272
(
2016
).
29.
M.
Lie
,
H.
Fjellvåg
, and
A.
Kjekshus
,
Thin Solid Films
488
,
74
(
2005
).
30.
S.
Vahdatifar
,
Y.
Mortazavi
, and
A. A.
Khodadadi
,
J. Mater. Sci.
55
,
13634
(
2020
).
31.
M.
Suwa
and
H.
Watari
,
Bunseki Kagaku
59
,
895
(
2010
).
32.
F.
Hirose
and
H.
Sakamoto
,
Appl. Surf. Sci.
107
,
75
(
1996
).
You do not currently have access to this content.