A novel precursor, 1,1,1-tris(dimethylamino)disilane {TADS, [(H3C)2N]3Si2H3}, is used to deposit silicon dioxide (SiO2) films in a temperature range of 115–480 °C by thermal atomic layer deposition (tALD) and plasma-enhanced atomic layer deposition (PEALD) techniques. Compared to tris(dimethylamino)silane (TDMAS), the additional Si-Si bond in TADS is expected to enhance the reactivity of the molecule due to the polarization of the bond. In the tALD process, TADS gives a growth rate of 0.06 nm/cycle, which is approximately 20% higher than that of TDMAS, and an excellent conformality (>95% step coverage) in high aspect ratio nanotrenches (6:1). In the case of the PEALD process, TADS leads to not only a higher or at least comparable growth rates (0.11 nm/cycle), but also a higher bulk film density (∼2.38 g/cm3). As a result, the PEALD SiO2 films of TADS show a wet-etch rate down to 1.6 nm/min in 200:1 HF, which is comparable to that of the thermal oxide. Analyzed with Fourier-Transform Infrared (FTIR), the SiO2 films contain predominant Si−O bonds and a low level of Si−H and O−H bonds, consistent with the observed high wet-etch resistance. Furthermore, the PEALD SiO2 films deposited at 310 °C have at least 75% step coverage in high aspect ratio nanotrenches, suggesting that TADS is applicable for forming high-quality SiO2 films on both planar and patterned surfaces.

1.
B. B.
Burton
,
S. W.
Kang
,
S. W.
Rhee
, and
S. M.
George
,
J. Phys. Chem. C
113
,
8249
(
2009
).
2.
Y. S.
Lee
,
D.
won Choi
,
B.
Shong
,
S.
Oh
, and
J. S.
Park
,
Ceram. Int.
43
,
2095
(
2017
).
3.
S.-J.
Won
,
S.
Suh
,
M. S.
Huh
, and
H. J.
Kim
,
IEEE Electron Device Lett.
31
,
857
(
2010
).
4.
J.-S.
Choi
,
B. S.
Yang
,
S.-J.
Won
,
J. R.
Kim
,
S.
Suh
,
H. K.
Park
,
J.
Heo
, and
H. J.
Kim
,
ECS Solid State Lett.
2
,
P114
(
2013
).
5.
J.-G.
Lim
 et al,
Solid-State Electron.
140
,
134
(
2018
).
6.
C. J.
Kirkpatrick
,
B.
Lee
,
R.
Suri
,
X.
Yang
, and
V.
Misra
,
IEEE Electron Device Lett.
33
,
1240
(
2012
).
7.
B.
Brar
,
G. D.
Wilk
, and
A. C.
Seabaugh
,
Appl. Phys. Lett.
69
,
2728
(
1996
).
8.
R. C.
Taylor
and
B. A.
Scott
,
J. Electrochem. Soc.
136
,
2382
(
1989
).
9.
J. W.
Lim
,
S. J.
Yun
, and
J. H.
Lee
,
ETRI J.
27
,
118
(
2005
).
10.
J. W.
Klaus
and
S. M.
George
,
J. Electrochem. Soc.
147
,
2658
(
2000
).
11.
J. W.
Klaus
and
S. M.
George
,
Surf. Sci.
447
,
81
(
2000
).
12.
X.
Meng
,
Y.-C.
Byun
,
H.
Kim
,
J.
Lee
,
A.
Lucero
,
L.
Cheng
, and
J.
Kim
,
Materials
9
,
1007
(
2016
).
13.
X.
Meng
 et al,
ACS Appl. Mater. Interfaces
10
,
14116
(
2018
).
14.
J. B.
Ko
,
H. I.
Yeom
, and
S.-H. K.
Park
,
IEEE Electron Device Lett.
37
,
39
(
2016
).
15.
Q.
Luc
 et al,
IEEE Electron Device Lett.
37
,
974
(
2016
).
16.
G.
Dingemans
,
C.
Van Helvoirt
,
M. C. M.
Van de Sanden
, and
W. M. M.
Kessels
,
ECS Trans.
35
,
191
(
2011
).
17.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
18.
A. J. M.
Mackus
,
A. A.
Bol
, and
W. M. M.
Kessels
,
Nanoscale
6
,
10941
(
2014
).
19.
I. J.
Raaijmakers
,
ECS Trans.
41
,
3
(
2011
).
20.
T.
Nam
 et al,
Appl. Surf. Sci.
485
,
381
(
2019
).
21.
A.
Mallikarjunan
,
H.
Chandra
,
M.
Xiao
,
X.
Lei
,
R. M.
Pearlstein
,
H. R.
Bowen
,
M. L.
O’Neill
,
A.
Derecskei-Kovacs
, and
B.
Han
,
J. Vac. Sci. Technol. A
33
,
01A137
(
2015
).
22.
M.
Putkonen
 et al,
Thin Solid Films
558
,
93
(
2014
).
23.
A.
Kobayashi
 et al,
Thin Solid Films
520
,
3994
(
2012
).
24.
D.
Hiller
 et al,
J. Appl. Phys.
107
,
064314
(
2010
).
25.
S.
Ahn
,
Y.
Kim
,
S.
Kang
,
K.
Im
, and
H.
Lim
,
J. Vac. Sci. Technol. A
35
,
01B131
(
2017
).
26.
M. L.
O’Neill
,
H. R.
Bowen
,
A.
Derecskei-Kovacs
,
K. S.
Cuthill
,
B.
Han
, and
M.
Xiao
,
Interface Mag.
20
,
33
(
2011
).
27.
F.
Hirose
,
Y.
Kinoshita
,
S.
Shibuya
,
Y.
Narita
,
Y.
Takahashi
,
H.
Miya
,
K.
Hirahara
,
Y.
Kimura
, and
M.
Niwano
,
Thin Solid Films
519
,
270
(
2010
).
28.
K.
Pfeiffer
,
S.
Shestaeva
,
A.
Bingel
,
P.
Munzert
,
U.
Schulz
,
N.
Kaiser
,
A.
Tünnermann
, and
A.
Szeghalmi
,
Proc. SPIE
9627
,
96270Q
(
2015
).
29.
D.
Shin
,
H.
Song
,
M.
Lee
,
H.
Park
, and
D.-H.
Ko
,
Thin Solid Films
660
,
572
(
2018
).
30.
Y.-J.
Choi
,
S.-M.
Bae
,
J.-H.
Kim
,
E.-H.
Kim
,
H.-S.
Hwang
,
J.-W.
Park
,
H.
Yang
,
E.
Choi
, and
J.-H.
Hwang
,
Ceram. Int.
44
,
1556
(
2018
).
31.
G.
Dingemans
,
C. A. A.
van Helvoirt
,
D.
Pierreux
,
W.
Keuning
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
159
,
H277
(
2012
).
32.
S. E.
Potts
,
H. B.
Profijt
,
R.
Roelofs
, and
W. M. M.
Kessels
,
Chem. Vap. Depos.
19
,
125
(
2013
).
33.
W.-H.
Kim
 et al,
J. Mater. Chem. C
2
,
5805
(
2014
).
34.
S.
Kamiyama
,
T.
Miura
, and
Y.
Nara
,
Thin Solid Films
515
,
1517
(
2006
).
35.
T.
Faraz
,
M.
Van Drunen
,
H. C. M.
Knoops
,
A.
Mallikarjunan
,
I.
Buchanan
,
D. M.
Hausmann
,
J.
Henri
, and
W. M. M.
Kessels
,
ACS Appl. Mater. Interfaces
9
,
1858
(
2017
).
36.
D. H.
Kim
,
H. J.
Lee
,
H.
Jeong
,
B.
Shong
,
W.-H.
Kim
, and
T. J.
Park
,
Chem. Mater.
31
,
5502
(
2019
).
37.
B. K.
Hwang
and
X.
Zhou
, WO 2019/027907 Al (
7 February 2019
).
38.
J.
Moulder
,
W.
Stickle
,
P.
Sobol
, and
K.
Bomben
,
Handbook of X-Ray Photoelectron Spectroscopy
, 2nd ed. (
Perkin-Elmer Corporation, Eden Prairie
,
1992
).
39.
Y.
Kinoshita
,
F.
Hirose
,
H.
Miya
,
K.
Hirahara
,
Y.
Kimura
, and
M.
Niwano
,
Electrochem. Solid-State Lett.
10
,
G80
(
2007
).
40.
R.
Munter
,
Proc. Est. Acad. Sci. Chem.
50
,
59
(
2001
).
41.
Y.-S.
Lee
,
J.-H.
Han
,
J.-S.
Park
, and
J.
Park
,
J. Vac. Sci. Technol. A
35
,
041508
(
2017
).
42.
D.
Shin
,
H.
Song
,
J.
Jeong
,
H.
Park
, and
D.-H.
Ko
,
J. Vac. Sci. Technol. A
37
,
020902
(
2019
).
43.
S. M.
Hwang
,
Z.
Qin
,
H. S.
Kim
,
A.
Ravichandran
,
Y. C.
Jung
,
S. J.
Kim
,
J.
Ahn
,
B. K.
Hwang
, and
J.
Kim
,
Jpn. J. Appl. Phys.
59
,
SIIG05
(
2020
).
44.
S. M.
Hwang
 et al,
ECS Trans.
89
,
63
(
2019
).
45.
H. S.
Kim
 et al,
ACS Appl. Mater. Interfaces
10
,
44825
(
2018
).
You do not currently have access to this content.