Since crystals grow from liquid and glassy states, the liquid structure feature may also exist in the pair-correlation functions of crystalline systems. The present article addresses the spherical-periodic order derived from Friedel oscillations in the pair-correlation functions of simple crystal structures such as face-centered cubic, hexagonal close-packed, and body-centered cubic structures. In these simple crystal structures, the resonance lattice planes, corresponding to the strong peaks in reciprocal space, give the Friedel wavelengths using their interplanar spacings, which are {111} and {200} for the face-centered cubic structure, {100}, {002}, and {101} for the hexagonal close-packed structure, and {110} for the body-centered cubic structure. After being scaled with the Friedel wavelengths corresponding to the most intense diffraction peaks, the pair-correlation functions all show atomic density maxima within the spherical-periodic zones. From such a spherical-periodic picture of any simple crystal structure, it is possible to identify a charge-neutral and mean-density local atomic entity that serves as the molecule-like structural unit of the whole structure. Examples in Cu-Zn, Co-Cr, and β-Ti alloys are provided to show how to interpret the compositions of simple-crystal-based industrial alloys.

1.
H.
Nowak
and
P.
Häussler
,
J. Non-Cryst. Solids
250–252
,
389
(
1999
).
2.
P.
Häussler
and
J.
Barzola-Quiquia
,
J. Non-Cryst. Solids
312–314
,
498
(
2002
).
3.
P.
Häussler
,
F.
Baumann
,
J.
Krieg
,
G.
Indlekofer
,
P.
Oelhafen
, and
H.-J.
Güntherodt
,
Phys. Rev. Lett.
51
,
714
(
1983
).
4.
J.
Friedel
,
London Edinburgh Dublin Philos. Mag. J. Sci.
43
,
153
(
1952
).
5.
J.
Friedel
,
Adv. Phys.
3
,
446
(
1954
).
6.
W. A.
Harrison
,
Solid State Theory
(
McGraw-Hill, Inc.
,
New York
,
1970
).
7.
J. M.
Ziman
,
Principles of the Theory of Solids
(
Cambridge University
,
Cambridge
,
1972
).
8.
P.
Häussler
,
Phys. Rep.
222
,
65
(
1992
).
9.
P.
Häussler
,
J. Non-Cryst. Solids
156–158
,
332
(
1993
).
10.
S. R.
Nagel
and
J.
Tauc
,
Phys. Rev. Lett.
35
,
380
(
1975
).
11.
J.
Friedel
,
Il Nuovo Cimento
7
,
287
(
1958
).
12.
P.
Häussler
,
J. Phys. Colloques
46
,
C8-361
(
1985
).
13.
J.
Kroha
,
A.
Huck
, and
T.
Kopp
,
Phys. Rev. Lett.
75
,
4278
(
1995
).
14.
X. J.
Liu
,
Y.
Xu
,
X.
Hui
,
Z. P.
Lu
,
F.
Li
,
G. L.
Chen
,
J.
Lu
, and
C. T.
Liu
,
Phys. Rev. Lett.
105
, 155501 (
2010
).
15.
X. J.
Liu
,
Y.
Xu
,
Z. P.
Lu
,
X.
Hui
,
G. L.
Chen
,
G. P.
Zheng
, and
C. T.
Liu
,
Acta Mater.
59
,
6480
(
2011
).
16.
Z. W.
Wu
,
M. Z.
Li
,
W. H.
Wang
, and
K. X.
Liu
,
Nat. Commun.
6
,
6035
(
2015
).
17.
P.
Häussler
,
R.
Haberkern
,
C.
Madel
,
J.
Barzola-Quiquia
, and
M.
Lang
,
J. Alloys Compd.
342
,
228
(
2002
).
18.
S.
Zhang
,
C.
Dong
, and
P.
Häussler
,
J. Phys.: Condens. Matter
33
,
074001
(
2021
).
19.
Y.
Waseda
and
M.
Ohtani
,
Z. Phys. B: Condens. Matter
21
,
229
(
1975
).
20.
Y.
Waseda
and
T.
Masumoto
,
Z. Phys. B: Condens. Matter
21
,
235
(
1975
).
21.
Y.
Waseda
and
S.
Tamaki
,
Philos. Mag.
32
,
273
(
1975
).
22.
Y.
Waseda
,
The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids
(
McGraw-Hill, Inc.
,
New York
,
1980
).
23.
S.
Takeda
,
S.
Tamaki
, and
Y.
Waseda
,
J. Phys. Soc. Jpn.
55
,
184
(
1986
).
24.
J. M.
Cowley
,
Phys. Rev.
77
,
669
(
1950
).
25.
J. M.
Cowley
,
Phys. Rev.
120
,
1648
(
1960
).
26.
J. M.
Cowley
,
Phys. Rev.
138
,
A1384
(
1965
).
27.
J. M.
Cowley
,
J. Appl. Phys.
21
,
24
(
1950
).
28.
S. C.
Moss
,
J. Appl. Phys.
35
,
3547
(
1964
).
29.
G. E.
Ice
,
C. J.
Sparks
,
X.
Jiang
, and
L.
Robertson
,
J. Phase Equilib.
19
,
529
(
1998
).
30.
C.
Dong
,
Q.
Wang
,
J. B.
Qiang
,
Y. M.
Wang
,
N.
Jiang
,
G.
Han
,
Y. H.
Li
,
J.
Wu
, and
J. H.
Xia
,
J. Phys. D: Appl. Phys.
40
,
R273
(
2007
).
31.
B. B.
Jiang
,
Q.
Wang
,
C.
Dong
, and
P. K.
Liaw
,
Sci. Rep.
9
,
3404
(
2019
).
32.
C.
Dong
,
Z.-J.
Wang
,
S.
Zhang
, and
Y.-M.
Wang
,
Int. Mater. Rev.
65
,
286
(
2020
).
33.
C.
Dong
,
D. D.
Dong
, and
Q.
Wang
,
Acta Metall. Sin.
54
,
293
(
2018
).
34.
ASM International Handbook Committee
,
Properties and Selection Nonferrous Alloys and Special-Purpose Materials
(
ASM International
, Materials Park, OH,
1990
), Vol. 2.
35.
ASM International Alloy Phase Diagram and the Handbook Committees
,
Alloy Phase Diagrams
(
ASM International
, Materials Park, OH,
1992
), Vol. 3.
36.
L.
Reinhard
,
B.
Schönfeld
,
G.
Kostorz
, and
W.
Bührer
,
Phys. Rev. B
41
,
1727
(
1990
).
37.
H. L.
Hong
,
Q.
Wang
,
C.
Dong
, and
P. K.
Liaw
,
Sci. Rep.
4
,
7065
(
2015
).
38.
S.
Zhang
,
T. Y.
Liu
,
C.
Dong
,
X. G.
Hu
, and
P.
Wan
, “Composition interpretation of Co-Cr eutectic point and relevant industrial alloys using cluster-plus-glue-atom formulation,” T. Nonferr. Metal Soc. (submitted).
39.
Q.
Wang
,
C.
Ji
,
Y.
Wang
,
J.
Qiang
, and
C.
Dong
,
Metall. Mater. Trans. A
44
,
1872
(
2013
).
40.
Q.
Wang
,
Y.
Ma
,
B.
Jiang
,
X.
Li
,
Y.
Shi
,
C.
Dong
, and
P. K.
Liaw
,
Scr. Mater.
120
,
85
(
2016
).
41.
Y.
Ma
,
Q.
Wang
,
B. B.
Jiang
,
C. L.
Li
,
J. M.
Hao
,
X. N.
Li
,
C.
Dong
, and
T. G.
Nieh
,
Acta Mater.
147
,
213
(
2018
).
42.
F.
Yang
,
Z.
Li
,
Q.
Wang
,
B. B.
Jiang
,
B. J.
Yan
,
P. C.
Zhang
,
W.
Xu
,
C.
Dong
, and
P. K.
Liaw
,
NPJ Comput. Mater.
6
,
1
(
2020
).
You do not currently have access to this content.