The importance of transparent oxide semiconductors is growing immensely due to their unprecedented dual properties: high electrical conductivity and optical transparency. They have been widely used in many transparent electronics devices due to their excellent electronic properties. In this Review, we discuss our recent research progresses on transparent ASnO3 (A = Ba, Sr, and Ca)-based thin films and thin film transistors (TFT). Here, we have explored the underlying materials physics through the investigation of fundamental properties such as effective mass, effective channel thickness, carrier mobility, electrical characteristics, and optical properties. High Hall mobility and wide bandgap are the key deciding parameters to consider when choosing ASnO3 for transparent electronic applications. Thus, carrier mobility improvisation was also carried out via modifying thin film preparation conditions such as using the highly oxidative atmosphere, vacuum annealing, and increasing the film thickness. Furthermore, we clarified the operating mechanism of BaSnO3-SrSnO3 solid solution-based TFTs and succeeded in fabricating the deep-UV La-doped SrSnO3 TFTs, which has great potential in biological applications. We have also demonstrated that the optoelectronic properties ASnO3 may be controlled by changing the A-site, which is consistent with expectations from the lattice parameter changes. This Review provides better options for designing ASnO3-based transparent devices in future.

1.
H.
Hosono
,
Transparent Electronics
(John Wiley & Sons,
2010
), pp.
31
59
.
2.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
(
2004
).
3.
H.
Hosono
,
Nat. Electron.
1
,
428
(
2018
).
4.
H. J.
Kim
 et al,
Appl. Phys. Express
5
,
061102
(
2012
).
5.
H.
Paik
 et al,
APL Mater.
5
,
116107
(
2017
).
6.
S.
Raghavan
,
T.
Schumann
,
H.
Kim
,
J. Y.
Zhang
,
T. A.
Cain
, and
S.
Stemmer
,
APL Mater.
4
,
016106
(
2016
).
7.
P. V.
Wadekar
 et al,
Appl. Phys. Lett.
105
,
052104
(
2014
).
8.
C. A.
Niedermeier
,
S.
Rhode
,
S.
Fearn
,
K.
Ide
,
M. A.
Moram
,
H.
Hiramatsu
,
H.
Hosono
, and
T.
Kamiya
,
Appl. Phys. Lett.
108
,
172101
(
2016
).
9.
K.
Ganguly
,
P.
Ambwani
,
P.
Xu
,
J. S.
Jeong
,
K. A.
Mkhoyan
,
C.
Leighton
, and
B.
Jalan
,
APL Mater.
3
,
062509
(
2015
).
10.
H.
Mun
,
U.
Kim
,
H.
Min Kim
,
C.
Park
,
T.
Hoon Kim
,
H.
Joon Kim
,
K.
Hoon Kim
, and
K.
Char
,
Appl. Phys. Lett.
102
,
252105
(
2013
).
11.
U.
Kim
 et al,
APL Mater.
2
,
056107
(
2014
).
12.
J.
Shiogai
,
K.
Nishihara
,
K.
Sato
, and
A.
Tsukazaki
,
AIP Adv.
6
,
065305
(
2016
).
13.
W.-J.
Lee
 et al,
Appl. Phys. Lett.
108
,
082105
(
2016
).
14.
A. V.
Sanchela
,
T.
Onozato
,
B.
Feng
,
Y.
Ikuhara
, and
H.
Ohta
,
Phys. Rev. Mater.
1
,
034603
(
2017
).
15.
A. V.
Sanchela
,
M.
Wei
,
H.
Zensyo
,
B.
Feng
,
J.
Lee
,
G.
Kim
,
H.
Jeen
,
Y.
Ikuhara
, and
H.
Ohta
,
Appl. Phys. Lett.
112
,
232102
(
2018
).
16.
A. V.
Sanchela
,
M.
Wei
,
J.
Lee
,
G.
Kim
,
H.
Jeen
,
B.
Feng
,
Y.
Ikuhara
,
H. J.
Cho
, and
H.
Ohta
,
J. Mater. Chem. C
7
,
5797
(
2019
).
17.
M.
Wei
,
A. V.
Sanchela
,
B.
Feng
,
Y.
Ikuhara
,
H. J.
Cho
, and
H.
Ohta
,
Appl. Phys. Lett.
116
,
022103
(
2020
).
18.
M.
Wei
,
L.
Gong
,
D.
Liang
,
H. J.
Cho
, and
H.
Ohta
,
Adv. Electron. Mater.
6
,
2000100
(
2020
).
19.
Z.
Zhang
,
M.
Kushimoto
,
T.
Sakai
,
N.
Sugiyama
,
L. J.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
,
Appl. Phys. Express
12
,
124003
(
2019
).
20.
H. J.
Cho
,
K.
Sato
,
M.
Wei
,
G.
Kim
, and
H.
Ohta
,
J. Appl. Phys.
127
,
115701
(
2020
).
21.
H. J.
Kim
 et al,
Phys. Rev. B
86
,
165205
(
2012
).
22.
E.
Moreira
,
J. M.
Henriques
,
D. L.
Azevedo
,
E. W. S.
Caetano
,
V. N.
Freire
,
U. L.
Fulco
, and
E. L.
Albuquerque
,
J. Appl. Phys.
112
,
043703
(
2012
).
23.
B.
Hadjarab
,
A.
Bouguelia
, and
M.
Trari
,
J. Phys. D Appl. Phys.
40
,
5833
(
2007
).
24.
H.-R.
Liu
,
J.-H.
Yang
,
H. J.
Xiang
,
X. G.
Gong
, and
S.-H.
Wei
,
Appl. Phys. Lett.
102
,
112109
(
2013
).
25.
H. J.
Kim
 et al,
Phys. Rev. B
88
,
125204
(
2013
).
26.
D.
Seo
,
K.
Yu
,
Y.
Jun Chang
,
E.
Sohn
,
K.
Hoon Kim
, and
E. J.
Choi
,
Appl. Phys. Lett.
104
,
022102
(
2014
).
27.
B. C.
Luo
,
X. S.
Cao
,
K. X.
Jin
, and
C. L.
Chen
,
Curr. Appl. Phys.
16
,
20
(
2016
).
28.
S.
James Allen
,
S.
Raghavan
,
T.
Schumann
,
K.-M.
Law
, and
S.
Stemmer
,
Appl. Phys. Lett.
108
,
252107
(
2016
).
29.
C. B.
Vining
,
J. Appl. Phys.
69
,
331
(
1991
).
30.
J.
Shin
,
Y. M.
Kim
,
Y.
Kim
,
C.
Park
, and
K.
Char
,
Appl. Phys. Lett.
109
,
262102
(
2016
).
31.
C.
Park
,
U.
Kim
,
C. J.
Ju
,
J. S.
Park
,
Y. M.
Kim
, and
K.
Char
,
Appl. Phys. Lett.
105
,
203503
(
2014
).
32.
W. Y.
Wang
,
Y. L.
Tang
,
Y. L.
Zhu
,
J.
Suriyaprakash
,
Y. B.
Xu
,
Y.
Liu
,
B.
Gao
,
S.-W.
Cheong
, and
X. L.
Ma
,
Sci. Rep.
5
,
16097
(
2015
).
33.
A.
Prakash
,
P.
Xu
,
A.
Faghaninia
,
S.
Shukla
,
J. W.
Ager
,
C. S.
Lo
, and
B.
Jalan
,
Nat. Commun.
8
,
15167
(
2017
).
34.
H.
Yun
,
A.
Prakash
,
T.
Birol
,
B.
Jalan
, and
K. A.
Mkhoyan
,
Nano Lett.
21
,
4357
(
2021
).
35.
A.
Prakash
,
P.
Xu
,
X.
Wu
,
G.
Haugstad
,
X.
Wang
, and
B.
Jalan
,
J. Mater. Chem. C
5
,
5730
(
2017
).
36.
Y.
Ozaki
,
D.
Kan
, and
Y.
Shimakawa
,
J. Appl. Phys.
121
,
215304
(
2017
).
37.
37 
Materials Aspect of Thermoelectricity
, 1st ed. (
CRC
, Boca Raton,
FL
,
2017
).
38.
D. O.
Scanlon
,
Phys. Rev. B
87
,
161201
(
2013
).
39.
H. J.
Cho
,
B.
Feng
,
T.
Onozato
,
M.
Wei
,
A. V.
Sanchela
,
Y.
Ikuhara
, and
H.
Ohta
,
Phys. Rev. Mater.
3
,
094601
(
2019
).
40.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
,
105
(
2008
).
41.
R.
Zhang
 et al,
APL Mater.
9
,
061103
(
2021
).
42.
A.
Vegas
,
M.
Vallet-Regi
,
J. M.
Gonzalez-Calbet
, and
M. A.
Alario-Franco
,
Acta Crystallogr. Sect. B Struct. Sci.
42
,
167
(
1986
).
43.
A. J.
Smith
and
A. J. E.
Welch
,
Acta Crystallogr.
13
,
653
(
1960
).
44.
E.
Baba
,
D.
Kan
,
Y.
Yamada
,
M.
Haruta
,
H.
Kurata
,
Y.
Kanemitsu
, and
Y.
Shimakawa
,
J. Phys. D Appl. Phys.
48
,
455106
(
2015
).
45.
M. C. F.
Alves
 et al,
Thin Solid Films
519
,
614
(
2010
).
46.
H.-M.
Christen
,
L. A.
Boatner
,
J. D.
Budai
,
M. F.
Chisholm
,
L. A.
Gea
,
D. P.
Norton
,
C.
Gerber
, and
M.
Urbanik
,
Appl. Phys. Lett.
70
,
2147
(
1997
).
47.
T.
Wang
,
L. R.
Thoutam
,
A.
Prakash
,
W.
Nunn
,
G.
Haugstad
, and
B.
Jalan
,
Phys. Rev. Mater.
1
,
061601
(
2017
).
48.
L.
Weston
,
L.
Bjaalie
,
K.
Krishnaswamy
, and
C. G.
Van de Walle
,
Phys. Rev. B
97
,
054112
(
2018
).
49.
T.
Kawaharamura
,
G. T.
Dang
, and
M.
Furuta
,
Jpn. J. Appl. Phys.
51
,
040207
(
2012
).
50.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
,
Appl. Phys. Lett.
77
,
4166
(
2000
).
51.
R.
Wakabayashi
,
K.
Yoshimatsu
,
M.
Hattori
, and
A.
Ohtomo
,
Appl. Phys. Lett.
111
,
162101
(
2017
).
52.
K.
Hayashi
,
S.
Matsuishi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
419
,
462
(
2002
).
53.
S.
Matsuishi
,
M.
Miyakawa
,
K.
Hayashi
,
T.
Kamiya
,
M.
Hirano
,
I.
Tanaka
, and
H.
Hosono
,
Science
301
,
626
(
2003
).
54.
M.
Miyakawa
,
M.
Hirano
,
T.
Kamiya
, and
H.
Hosono
,
Appl. Phys. Lett.
90
,
182105
(
2007
).
55.
D.
Zhang
,
W.
Zheng
,
Q.
Zheng
,
A.
Chen
,
X.
Ji
, and
F.
Huang
,
Adv. Electron. Mater.
2
,
1600320
(
2016
).
56.
H.
Mizoguchi
,
H. W.
Eng
, and
P. M.
Woodward
,
Inorg. Chem.
43
,
1667
(
2004
).
57.
D. J.
Singh
,
Q.
Xu
, and
K. P.
Ong
,
Appl. Phys. Lett.
104
,
011910
(
2014
).
58.
Q.
Liu
,
F.
Jin
,
G.
Gao
, and
W.
Wang
,
J. Alloys Compd.
717
,
62
(
2017
).
59.
L.
Xiang
,
J. L.
Palma
,
Y.
Li
,
V.
Mujica
,
M. A.
Ratner
, and
N.
Tao
,
Nat. Commun.
8
,
14471
(
2017
).
60.
A.
Segura
,
J. A.
Sans
,
D.
Errandonea
,
D.
Martinez-García
, and
V.
Fages
,
Appl. Phys. Lett.
88
,
011910
(
2006
).
61.
E. H.
Mountstevens
,
J. P.
Attfield
, and
S. A. T.
Redfern
,
J. Phys. Condens. Matter
15
,
8315
(
2003
).
You do not currently have access to this content.