Thin films of silver were deposited on nonalkali glass substrates at substrate temperatures ranging from room temperature (28 °C) to 150, 200, 300, 400, and 500 °C at discharge pressures of 0.40, 1.20, and 2.00 Pa using direct current magnetron sputtering. On the basis of the measured cross-sectional and surface morphologies, crystallographic structures, and film properties, I discuss the dependence of the film structure and properties on the substrate temperature. The x-ray diffraction measurements showed that the <111> orientation was preferred for all deposition conditions. Scanning electron microscope observations revealed a microstructure of convex-shaped fine grains for a substrate at room temperature, while laterally growing, mound-shaped grains with flat-topped surfaces appeared at substrate temperatures of 400 and 500 °C. Atomic force microscopy also showed an increase in the lateral size and height of the mound-shaped structures with increasing substrate temperature. The lateral grain size evaluated from the areal particle density obtained from atomic force microscopy increased significantly with increasing substrate temperature, reaching 600–800 nm at a substrate temperature of 500 °C. The film stress also changed from compressive to tensile with increasing substrate temperature. The relative density, defined as the ratio of the deposited amount-of-substance to the physical-thickness, decreased significantly with increasing substrate temperature and, at a substrate temperature of 500 °C, was approximately 0.6 times as large as that obtained for thin films deposited at room temperature. The high surface diffusivity of the Ag adatoms induces the growth of laterally growing, mound-shaped grains. Besides, the energy accumulated in the thin films during sputter deposition induces the void formation to increase the efficiency of energy release in the form of heat.

1.
J. A.
Thornton
,
J. Vac. Sci. Technol.
11
,
666
(
1974
).
2.
J. A.
Thornton
,
Ann. Rev. Mater. Sci.
7
,
239
(
1977
).
3.
J. A.
Thornton
,
J. Vac. Sci. Technol. A
4
,
3059
(
1986
).
4.
M.
Ohring
, “
Film structure
,” in
Materials Science of Thin Films, Deposition and Structure
, 2nd ed., edited by
M.
Ohring
(
Elsevier
,
Oxford
,
2005
), Chap. 9, pp.
495
558
.
5.
E.
Kusano
,
J. Vac. Sci. Technol. A
36
,
041506
(
2018
).
6.
J. S.
Griffith
,
J. Inorg. Nucl. Chem.
3
,
15
(
1956
).
7.
L.
Brewer
, Lawrence Berkeley Laboratory Report No. LBL-3720, 1977, p. 4; C. Kittel,
Introduction to Solid State Physics
, 8th edn. (Wiley, Inc., NJ, 2005), p. 50.
8.
S.
Craig
and
G. L.
Harding
,
J. Vac. Sci. Technol.
19
,
205
(
1981
).
9.
J.
Sarkar
,
Sputtering Materials for VLSI and Thin Film Devices
(
William Andrew
,
Waltham
,
2010
), pp.
1
86
.
10.
L.
Vitos
,
A. V.
Ruban
,
H. L.
Skriver
, and
J.
Kollár
,
Surf. Sci.
411
,
186
(
1998
).
11.
I.
Barin
,
Thermochemical Data of Pure Substances Part II
, 3rd ed. (
VCH Verlagsgesellschaft GmbH
,
Weinheim
,
1995
), p.
485
, see
12.
I.
Barin
,
Thermochemical Data of Pure Substances Part II
, 3rd ed. (
VCH Verlagsgesellschaft GmbH
,
Weinheim
,
1995
), p.
12
, see
13.
P.
Scardi
, “
Microstructural properties lattice defects and domain size effects
,” in
Powder Diffraction Theory Practice
, edited by
R. E.
Dinnebier
and
S. J. L.
Billinge
(
Royal Society of Chemistry
,
Cambridge
,
2008
), Chap. 13, pp.
376
413
.
14.
E. J.
Mittemeijer
and
U.
Welzel
,
Z. Kristallogr. Cryst. Mater.
223
,
552
(
2008
).
15.
Powder diffraction file (International Centre for Diffraction Data, Newtown Square, PA), CARD #4-783, Ag.
16.
CRC Handbook of Chemistry and Physics
, 97th ed., edited by
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2016
), Section 12–43.
17.
CRC Handbook of Chemistry and Physics
, 97th ed., edited by
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2016
), Section 4–83.
18.
B.
Lewis
and
D. S.
Campbell
,
J. Vac. Sci. Technol.
4
,
209
(
1967
).
19.
B. N.
Chapman
and
M. R.
Jordan
,
J. Phys. C
2
,
1550
(
1969
).
20.
B.
Müller
,
L.
Nedelmann
,
B.
Fischer
,
H.
Brune
, and
K.
Kern
,
Phys. Rev. B
54
,
017858
(
1996
).
21.
S. Y.
Davydov
,
Phys. Solid State
41
,
8
(
1999
).
22.
J. M.
Wills
and
W. A.
Harrison
,
Phys. Rev. B
28
,
4363
(
1983
).
23.
J. M.
Wills
and
W. A.
Harrison Wills
,
Phys. Rev. B
29
,
5486
(
1984
).
24.
CRC Handbook of Chemistry and Physics
, 97th ed., edited by
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2016
), Sections 4-45–4-96.
25.
L.
Brewer
and
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2005
), p.
50
, Lawrence Berkeley Laboratory Report 3720, 4 (1977).
26.
C.
Polop
,
H.
Hansen
,
W.
Langenkamp
,
Z.
Zhong
,
C.
Busse
,
U.
Linke
,
M.
Kotrla
,
P. J.
Feibelman
, and
T.
Michely
,
Surf. Sci.
575
,
89
(
2005
).
27.
G.
Rosenfeld
,
N. N.
Lipkin
,
W.
Wulfhekel
,
J.
Kliewer
,
K.
Morgenstern
,
B.
Poelsema
, and
G.
Comsa
,
Appl. Phys. A
61
,
455
(
1995
).
28.
X.
Yu
,
P. M.
Duxbury
,
G.
Jeffers
, and
M. A.
Dubson
,
Phys. Rev. B
44
,
013163
(
1991
).
29.
G.
Jeffers
,
M. A.
Dubson
, and
P. M.
Duxbury
,
J. Appl. Phys.
75
,
5016
(
1994
).
30.
R. F.
Xiao
and
N. B.
Ming
,
Phys. Rev. E
49
,
4720
(
1994
).
31.
J. B.
Maxson
,
D. E.
Savage
,
F.
Liu
,
R. M.
Tromp
,
M. C.
Reuter
, and
M. G.
Lagally
,
Phys. Rev. Lett.
85
,
2152
(
2000
).
32.
D. J.
Eaglesham
and
M.
Cerullo
,
Phys. Rev. Lett.
64
,
1943
(
1990
).
33.
A.
Baskaran
and
P.
Smereka
,
J. Appl. Phys.
111
,
044321
(
2012
).
34.
J.
Tersoff
and
F. K.
Le Goues
,
Phys. Rev. Lett.
72
,
3570
(
1994
).
35.
W. C.
Elliott
,
P. F.
Miceli
,
T.
Tse
, and
P. W.
Stephens
,
Phys. Rev. B
54
,
017938
(
1996
).
36.
H.
Gao
and
W. D.
Nix
,
Annu. Rev. Mater. Sci.
29
,
173
(
1999
).
37.
D. V.
Yurasov
,
Y. N.
Drozdov
,
M. V.
Shaleev
, and
A. V.
Novikov
,
Appl. Phys. Lett.
95
,
151902
(
2009
).
38.
H.
Kersten
,
D.
Rohde
,
H.
Steffen
,
H.
Deutsch
,
R.
Hippler
,
G. H. P. M.
Swinkels
, and
G. M. W.
Kroesen
,
Appl. Phys. A
72
,
531
(
2001
).
39.
M.
Čada
,
J. W.
Bradley
,
G. C. B.
Clarke
, and
P. J.
Kelly
,
J. Appl. Phys.
102
,
063301
(
2007
).
40.
P. A.
Cormier
,
A.
Balhamri
,
A. L.
Thomann
,
R.
Dussart
,
N.
Semmar
,
J.
Mathias
,
R.
Snyders
, and
S.
Konstantinidis
,
J. Appl. Phys.
113
,
013305
(
2013
).
41.
A.-L.
Thomann
,
A.
Caillard
,
M.
Raza
,
M. E.
El Mokh
,
P. A.
Cormier
, and
S.
Konstantinidis
,
Surf. Coat. Technol.
377
,
124887
(
2019
).
42.
H.
Gnaser
, “
Energy and angular distributions of sputtered species
,” in
Sputtering by Particle Bombardment, Experiments and Computer Calculations From Threshold to MeV Energies
, edited by
R.
Behrisch
and
W.
Eckstein
(
Springer-Verlag
,
Berlin
,
2007
), pp.
231
328
.
43.
W. D.
Westwood
, “
Sputter mechanisms and target processes
,” in
Sputter Deposition
, edited by
W. D.
Westwood
(
AVS
,
New York
,
2003
), Chap. 1, pp.
3
22
.
44.
J. A.
Thornton
and
D. W.
Hoffman
,
Thin Solid Films
171
,
5
(
1989
).
45.
W. D.
Nix
,
Metall. Trans A
20
,
2217
(
1989
).
46.
H.
Windischmann
,
Crit. Rev. Solid State Mater. Sci.
17
,
547
(
1992
).
47.
R.
Daniel
,
K. J.
Martinschitz
,
J.
Keckes
, and
C.
Mitterer
,
Acta Mater.
58
,
2621
(
2010
).
48.
G.
Abadias
 et al.,
J. Vac. Sci. Technol. A
36
,
020801
(
2018
).
49.
R. L.
Schwoebel
and
E. J.
Shipsey
,
J. Appl. Phys.
37
,
3682
(
1966
).
50.
G.
Ehrlich
,
Surf. Sci.
299–300
,
628
(
1994
).
51.
S. J.
Liu
,
H.
Huang
, and
C. H.
Woo
,
Appl. Phys. Lett.
80
,
3295
(
2002
).
52.
B.
,
G. A.
Almyras
,
V.
Gervilla
,
J. E.
Greene
, and
K.
Sarakinos
,
Phys. Rev. Mater.
2
,
063401
(
2018
).
53.
B.
Lu
and
D. E.
Laughlin
, “
Microstructure of longitudinal media
,” in
The Physics of Ultra-High-Density Magnetic Recording
, edited by
M. L.
Plumer
,
J.
van Ek
, and
D.
Weller
(
Springer-Verlag
,
Berlin
,
2001
), Chap. 2, pp.
33
80
.
54.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
,
Sci. Technol. Adv. Mater.
11
,
044305
(
2010
).
55.
J. D.
Major
,
Semicond. Sci. Technol.
31
,
093001
(
2016
).
56.
S.
Zhuk
,
A.
Kushwaha
,
T. K.
Wong
,
S.
Masudy-Panah
,
A.
Smirnov
, and
G. K.
Dalapati
,
Sol. Energy Mater. Sol. Cells
171
,
239
(
2017
).
57.
J. D.
Agudelo-Giraldo
,
E.
Restrepo-Parra
, and
J.
Restrepo
,
Sci. Rep.
10
,
5041
(
2020
).
You do not currently have access to this content.