The hydrolysis and subsequent acidic dehydration of biomass leads to the production of smaller oxygenates, including furfural, which can undergo subsequent reactions such as hydrogenation to produce value-added products. Palladium has been found to be an active catalyst for this process. As a result, the surface chemistry of furfural is investigated on a Pd(111) single-crystal surface using reflection-absorption infrared spectroscopy as a basis for understanding the catalytic conversion of furfural to value-added products. Following adsorption at 90 K, furfural adopts a flat-lying geometry at low coverages, but converts to a tilted species as the coverage approaches saturation. Heating to ∼175 K forms a tilted η1(O) species that appears to deprotonate on heating to above 200 K to form an intermediate with a tilted furyl ring and a carbonyl group close to parallel to the surface. Further heating to ∼250 K and above caused this species to decarbonylate to form adsorbed carbon monoxide and an infrared invisible furyl intermediate. This can then undergo a ring-opening reaction to produce further CO and form a C3H3 intermediate that can hydrogenate to produce propylene. This reaction sequence is in good agreement with previous density functional theory calculations and with the products observed in temperature-programmed desorption.

1.
J. N.
Chheda
,
G. W.
Huber
, and
J. A.
Dumesic
,
Angew. Chem., Int. Ed.
46
,
7164
(
2007
).
2.
M. J.
Climent
,
A.
Corma
, and
S.
Iborra
,
Green Chem.
16
,
516
(
2014
).
3.
I.
Delidovich
,
K.
Leonhard
, and
R.
Palkovits
,
Energy Environ. Sci.
7
,
2803
(
2014
).
4.
I.
Delidovich
,
P. J. C.
Hausoul
,
L.
Deng
,
R.
Pfützenreuter
,
M.
Rose
, and
R.
Palkovits
,
Chem. Rev.
116
,
1540
(
2016
).
5.
J. W.
Medlin
,
ACS Catal.
1
,
1284
(
2011
).
6.
J. C.
Serrano-Ruiz
and
J. A.
Dumesic
,
Energy Environ. Sci.
4
,
83
(
2011
).
7.
J.-P.
Lange
,
E.
van der Heide
,
J.
van Buijtenen
, and
R.
Price
,
ChemSusChem
5
,
150
(
2012
).
8.
A.
Bohre
,
S.
Dutta
,
B.
Saha
, and
M. M.
Abu-Omar
,
ACS Sustain. Chem. Eng.
3
,
1263
(
2015
).
9.
R.
Mariscal
,
P.
Maireles-Torres
,
M.
Ojeda
,
I.
Sadaba
, and
M.
Lopez Granados
,
Energy Environ. Sci.
9
,
1144
(
2016
).
10.
H. E.
Hoydonckx
,
W. M.
Van Rhijn
,
W.
Van Rhijn
,
D. E.
De Vos
, and
P. A.
Jacobs
,
Ullmann's Encyclopedia of Industrial Chemistry
(
Wiley-VCH Verlag GmbH & Co. KGaA
, Weinheim,
2000
).
11.
D.
Liu
,
D.
Zemlyanov
,
T.
Wu
,
R. J.
Lobo-Lapidus
,
J. A.
Dumesic
,
J. T.
Miller
, and
C. L.
Marshall
,
J. Catal.
299
,
336
(
2013
).
12.
S.
Chen
,
R.
Wojcieszak
,
F.
Dumeignil
,
E.
Marceau
, and
S.
Royer
,
Chem. Rev.
118
,
11023
(
2018
).
13.
A.
O'Driscoll
,
J. J.
Leahy
, and
T.
Curtin
,
Catal. Today
279
,
194
(
2017
).
14.
S.
Dutta
,
S.
De
,
B.
Saha
, and
M. I.
Alam
,
Catal. Sci. Technol.
2
,
2025
(
2012
).
15.
S.
Iqbal
 et al.,
Catal. Sci. Technol.
4
,
2280
(
2014
).
16.
O. F.
Aldosari
 et al.,
Catal. Sci. Technol.
6
,
234
(
2016
).
17.
S. H.
Pang
and
J. W.
Medlin
,
ACS Catal.
1
,
1272
(
2011
).
18.
S.
Wang
,
V.
Vorotnikov
, and
D. G.
Vlachos
,
ACS Catal.
5
,
104
(
2015
).
19.
M. J.
Taylor
,
L.
Jiang
,
J.
Reichert
,
A. C.
Papageorgiou
,
S. K.
Beaumont
,
K.
Wilson
,
A. F.
Lee
,
J. V.
Barth
, and
G.
Kyriakou
,
J. Phys. Chem. C
121
,
8490
(
2017
).
20.
R. G.
Greenler
,
D. R.
Snider
,
D.
Witt
, and
R. S.
Sorbello
,
Surf. Sci.
118
,
415
(
1982
).
21.
V.
Vorotnikov
,
G.
Mpourmpakis
, and
D. G.
Vlachos
,
ACS Catal.
2
,
2496
(
2012
).
22.
S.
Sitthisa
,
T.
Pham
,
T.
Prasomsri
,
T.
Sooknoi
,
R. G.
Mallinson
, and
D. E.
Resasco
,
J. Catal.
280
,
17
(
2011
).
23.
S.
Sitthisa
,
T.
Sooknoi
,
Y.
Ma
,
P. B.
Balbuena
, and
D. E.
Resasco
,
J. Catal.
277
,
1
(
2011
).
24.
R. M.
Ormerod
,
C. J.
Baddeley
,
C.
Hardacre
, and
R. M.
Lambert
,
Surf. Sci.
360
,
1
(
1996
).
25.
T. E.
Caldwell
,
I. M.
Abdelrehim
, and
D. P.
Land
,
J. Am. Chem. Soc.
118
,
907
(
1996
).
27.
M.
Kaltchev
,
A. W.
Thompson
, and
W. T.
Tysoe
,
Surf. Sci.
391
,
145
(
1997
).
28.
J.
Szanyi
,
W. K.
Kuhn
, and
D. W.
Goodman
,
J. Vac. Sci. Technol. A
11
,
1969
(
1993
).
29.
R.
Bavisotto
,
N.
Hopper
,
A.
Boscoboinik
,
Q.
Owen
, and
W. T.
Tysoe
,
CrystEngComm
23
,
4534
(
2021
).
30.
M.
Rogojerov
,
G.
Keresztury
, and
B.
Jordanov
,
Spectrochim. Acta, Part A
61
,
1661
(
2005
).
31.
G.
Allen
and
H. J.
Bernstein
,
Can. J. Chem.
33
,
1055
(
1955
).
32.
T. S.
Little
,
J.
Qiu
, and
J. R.
Durig
,
Spectrochim. Acta, Part A
45
,
789
(
1989
).
33.
J. L.
Davis
and
M. A.
Barteau
,
Surf. Sci.
187
,
387
(
1987
).
34.
J. L.
Davis
and
M. A.
Barteau
,
J. Am. Chem. Soc.
111
,
1782
(
1989
).
35.
J. L.
Davis
and
M. A.
Barteau
,
Surf. Sci.
235
,
235
(
1990
).
36.
K.
Xiong
and
J. G.
Chen
,
Catal. Today
339
,
289
(
2020
).
37.
N. B.
Colthup
,
L. H.
Daly
, and
S. E.
Wiberley
,
Introduction to Infrared and Raman Spectroscopy
, 2nd ed. (
Academic
,
New York
,
1975
).
38.
R. G.
Greenler
,
J. Chem. Phys.
44
,
310
(
1966
).
39.
J.
Szanyi
,
W. K.
Kuhn
, and
D. W.
Goodman
,
J. Vac. Sci. Technol. A
11
,
1969
(
1993
).
40.
W. K.
Kuhn
,
J.
Szanyi
, and
D. W.
Goodman
,
Surf. Sci.
274
,
L611
(
1992
).
41.
T.
Shimanouchi
and
D.
Tokyo
,
U.S. Department of Commerce, and National Bureau of Standards, Tables of Molecular Vibrational Frequencies Consolidated Volume I
(
United States Government Printing Office
,
Washington, DC
,
1972
).
42.
M. K.
Bradley
,
D. A.
Duncan
,
J.
Robinson
, and
D. P.
Woodruff
,
Phys. Chem. Chem. Phys.
13
,
7975
(
2011
).
43.
G. E.
Gdowski
,
T. E.
Felter
, and
R. H.
Stulen
,
Surf. Sci.
181
,
L147
(
1987
).
44.
W. T.
Tysoe
,
R. M.
Ormerod
,
R. M.
Lambert
,
G.
Zgrablich
, and
A.
Ramirez-Cuesta
,
J. Phys. Chem.
97
,
3365
(
1993
).
45.
G.
Schultz
,
I.
Fellegvári
,
M.
Kolonits
,
Á. I.
Kiss
,
Bélapete
, and
J.
Bánki
,
J. Mol. Struct.
50
,
325
(
1978
).
46.
C.
Araujo-Andrade
,
A.
Gómez-Zavaglia
,
I. D.
Reva
, and
R.
Fausto
,
J. Phys. Chem. A
116
,
2352
(
2012
).
47.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001355 for Figs. S1 and S2.

Supplementary Material

You do not currently have access to this content.