Barium titanate (BaTiO3), as a classical ferroelectric material, has been widely applied in photovoltaic cells due to its unique ferroelectric photovoltaic effect for charge separation. However, its large bandgap (3.40 eV) limits sunlight absorption efficiency. Anion substitution by elements with smaller electronegativity has been demonstrated as an emergent strategy for reducing bandgaps for traditional oxides. This work reports the electronic structure and anion engineering to replace the oxygen atoms in BaTiO3 with sulfur atoms, leading to a new material system of perovskite oxysulfide BaTi(O,S)3. First-principles calculations show that the bandgap of BaTiOS2 and BaTiS3 are 1.25 and 0.13 eV, respectively, which are significantly smaller than that of BaTiO3. Meanwhile, the optical absorption of BaTiOS2 and BaTiS3 is shown to be in the range of visible light and is improved remarkably as compared with BaTiO3. The presented results suggest that BaTiOS2 and BaTiS3 are promising candidates for photovoltaic materials.

1.
P.
Tonui
,
S. O.
Oseni
,
G.
Sharma
,
Q.
Yan
, and
G.
Tessema Mola
,
Renewable Sustainable Energy Rev.
91
,
1025
(
2018
).
2.
S.
Zhang
 et al,
Phys. Rev. Appl.
10
, 044004 (
2018
).
3.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
4.
F.
Bi
,
S.
Markov
,
R.
Wang
,
Y.
Kwok
,
W.
Zhou
,
L.
Liu
,
X.
Zheng
,
G.
Chen
, and
C.
Yam
,
J. Phys. Chem. C
121
,
11151
(
2017
).
5.
Y.
Jiang
,
H.
Ning
, and
J.
Yu
,
AIP Adv.
8
,
125334
(
2018
).
6.
H.
Park
,
C.
Ha
, and
J. H.
Lee
,
J. Mater. Chem. A
8
,
24353
(
2020
).
7.
H.
Matsuo
,
Y.
Kitanaka
,
R.
Inoue
,
Y.
Noguchi
,
M.
Miyayama
,
T.
Kiguchi
, and
T. J.
Konno
,
Phys. Rev. B
94
,
214111
(
2016
).
8.
S.
Zhang
 et al,
Phys. Rev. Lett.
126
,
176401
(
2021
).
9.
L.
Xu
,
Z.
Wang
,
B.
Su
,
C.
Wang
,
X.
Yang
,
R.
Su
,
X.
Long
, and
C.
He
,
Crystals
10
,
434
(
2020
).
10.
Y.
Wang
 et al,
Nature
550
,
487
(
2017
).
11.
F.
Giordano
 et al,
Nat. Commun.
7
,
10379
(
2016
).
12.
S.
Zhang
,
S.
Taylor
,
F.
Li
,
J.
Luo
, and
R. J.
Meyer
,
Appl. Phys. Lett.
102
, 172902 (
2013
).
13.
J.
Hwang
 et al,
Mater. Today
31
,
100
(
2019
).
14.
L. F.
Zhu
,
B. P.
Zhang
,
J. Q.
Duan
,
B. W.
Xun
,
N.
Wang
,
Y. C.
Tang
, and
G. L.
Zhao
,
J. Eur. Ceram. Soc.
38
,
3463
(
2018
).
15.
Y. Y.
Sun
,
M. L.
Agiorgousis
,
P.
Zhang
, and
S.
Zhang
,
Nano Lett.
15
,
581
(
2015
).
16.
S.
Perera
 et al,
Nano Energy
22
,
129
(
2016
).
17.
J. A.
Brehm
,
H.
Takenaka
,
C. W.
Lee
,
I.
Grinberg
,
J. W.
Bennett
,
M. R.
Schoenberg
, and
A. M.
Rappe
,
Phys. Rev. B
89
,
195202
(
2014
).
18.
G.
Amarsanaa
,
D.
Odkhuu
,
C.
Won Ahn
, and
I. W.
Kim
,
J. Appl. Phys.
116
,
194105
(
2014
).
19.
H.
Zitouni
,
N.
Tahiri
,
O.
El Bounagui
, and
H.
Ez-Zahraouy
,
Appl. Phys. A
126
,
800
(
2020
).
20.
W.
Trzebiatowski
,
J.
Wojciechowska
, and
J.
Damm
,
Experientia
6
,
137
(
1950
).
21.
T.
Sluka
,
A. K.
Tagantsev
,
P.
Bednyakov
, and
N.
Setter
,
Nat. Commun.
4
,
1808
(
2013
).
22.
M.
Acosta
,
N.
Novak
,
V.
Rojas
,
S.
Patel
,
R.
Vaish
,
J.
Koruza
,
G. A.
Rossetti
, and
J.
Rödel
,
Appl. Phys. Rev.
4
,
041305
(
2017
).
23.
M. M.
Vijatovic
,
J. D.
Bobic
, and
B. D.
Stojanovic
,
Sci. Sinter.
40
,
235
(
2008
).
24.
S.
Sanna
,
C.
Thierfelder
,
S.
Wippermann
,
T. P.
Sinha
, and
W. G.
Schmidt
,
Phys. Rev. B
83
,
054112
(
2011
).
25.
M.
Wang
,
C.
Wang
,
Y.
Liu
, and
X.
Zhou
,
J. Solid State Chem.
280
,
121018
(
2019
).
26.
H.
Gao
,
T.
Lin
,
Y.
Yan
,
K.
Fu
,
Y.
Liu
, and
X.
Liu
,
Phys. Chem. Chem. Phys.
22
,
18284
(
2020
).
27.
R. F.
Blunt
and
W. F.
Love
,
Phys. Rev.
76
,
1202
(
1949
).
28.
J.
Hlinka
,
T.
Ostapchuk
,
D.
Nuzhnyy
,
J.
Petzelt
,
P.
Kuzel
,
C.
Kadlec
,
P.
Vanek
,
I.
Ponomareva
, and
L.
Bellaiche
,
Phys. Rev. Lett.
101
,
167402
(
2008
).
29.
B.
Luo
,
X.
Wang
,
E.
Tian
,
H.
Song
,
Q.
Zhao
,
Z.
Cai
,
W.
Feng
, and
L.
Li
,
J. Eur. Ceram. Soc.
38
,
1562
(
2018
).
30.
M.
Boulos
,
S.
Guillemetfritsch
,
F.
Mathieu
,
B.
Durand
,
T.
Lebey
, and
V.
Bley
,
Solid State Ionics
176
,
1301
(
2005
).
31.
R. S.
Lamba
,
P.
Basera
,
S.
Bhattacharya
, and
S.
Sapra
,
J. Phys. Chem. Lett.
10
,
5173
(
2019
).
32.
F.
Ji
 et al,
Angew. Chem. Int. Ed. Engl.
59
,
15191
(
2020
).
33.
X.
Ding
,
Y.
Zhao
,
H.
Xiao
, and
L.
Qiao
,
Appl. Phys. Lett.
118
, 091601 (
2021
).
34.
P. E.
Blochl
,
Phys. Rev. B
50
,
17953
(
1994
).
35.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
36.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
37.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
38.
X.
Ding
,
S.
Zhang
,
M.
Zhao
,
Y.
Xiang
,
K. H. L.
Zhang
,
X.
Zu
,
S.
Li
, and
L.
Qiao
,
Phys. Rev. Appl.
12
, 064061 (
2019
).
39.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
,
1505
(
1998
).
40.
A. I.
Liechtenstein
,
V. V.
Anisimov
, and
J.
Zaanen
,
Phys. Rev. B
52
,
R5467
(
1995
).
41.
M.
Cococcioni
and
S.
de Gironcoli
,
Phys. Rev. B
71
,
035105
(
2005
).
42.
S.
Niu
 et al,
Nat. Photonics
12
,
392
(
2018
).
43.
J.
Wu
,
X.
Cong
,
S.
Niu
,
F.
Liu
,
H.
Zhao
,
Z.
Du
,
J.
Ravichandran
,
P. H.
Tan
, and
H.
Wang
,
Adv. Mater.
31
,
1902118
(
2019
).
44.
T. R.
Paudel
and
E. Y.
Tsymbal
,
ACS Omega
5
,
12385
(
2020
).
45.
A.
Clearfield
,
Acta Cryst.
16
,
135
(
1963
).
46.
V. I.
Anisimov
,
F.
Aryasetiawan
, and
A. I.
Lichtenstein
,
J. Phys.: Condens. Matter
9
,
767
(
1997
).
47.
Z.
Jiang
,
Y.
Nahas
,
B.
Xu
,
S.
Prosandeev
,
D.
Wang
, and
L.
Bellaiche
,
J. Phys.: Condens. Matter
28
,
475901
(
2016
).
48.
J.
Zhang
,
Y. P.
Zhang
, and
C. M.
Su
,
Calphad
71
, 102007 (
2020
).
49.
J. J.
Wang
,
F. Y.
Meng
,
X. Q.
Ma
,
M. X.
Xu
, and
L. Q.
Chen
,
J. Appl. Phys.
108
, 034107 (
2010
).
50.
N. A. A.
Razak
,
N. A.
Zabidi
, and
A. N.
Rosli
,
AIP Conf. Proc.
1875
,
020017
(
2017
).
51.
V.
Mishra
 et al,
J. Appl. Phys.
122
, 065105 (
2017
).
52.
Q. J.
Liu
,
N. C.
Zhang
,
F. S.
Liu
,
H. Y.
Wang
, and
Z. T.
Liu
,
Opt. Mater.
35
,
2629
(
2013
).
53.
M.
Cardona
,
Phys. Rev.
140
,
A651
(
1965
).
54.
Z. D.
Pozun
and
G.
Henkelman
,
J. Chem. Phys.
134
,
224706
(
2011
).
55.
B. C.
Frazer
,
H. R.
Danner
, and
R.
Pepinsky
,
Phys. Rev.
100
,
745
(
1955
).
56.
G.
Shirane
,
H.
Danner
, and
R.
Pepinsky
,
Phys. Rev.
105
,
856
(
1957
).
57.
H.
Natsui
,
J.
Yu
,
S.
Hashimoto
,
M.
Itoh
,
O.
Odawara
, and
S.
Yoda
,
Ferroelectrics
415
,
122
(
2011
).
58.
E.
Sawaguchi
,
Y.
Akishige
, and
M.
Kobayashi
,
J. Phys. Soc. Jpn.
54
,
480
(
1985
).
59.
X.
Meng
,
X.
Wen
, and
G.
Qin
,
Comput. Mater. Sci.
49
,
S372
(
2010
).
60.
A.
Savin
,
R.
Nesper
,
S.
Wengert
, and
T. E.
Fassler
,
Angew. Chem. Int. Ed. Engl.
36
,
1808
(
1997
).
61.
B.
Wang
,
Q.
Lu
,
Y.
Ge
,
K.
Zhang
,
W.
Xie
,
W.-M.
Liu
, and
Y.
Liu
,
Phys. Rev. B
96
, 134116 (
2017
).
62.
X.
Deng
,
B.
Luo
,
Z.
Zhang
,
C.
Zhao
,
M.
Shi
, and
E.
Tian
,
Physica E
130
,
114690
(
2021
).
63.
I.
Petousis
 et al,
Sci. Data
4
,
160134
(
2017
).
64.
M.
Gajdoš
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmüller
, and
F.
Bechstedt
,
Phys. Rev. B
73
, 045112 (
2006
).
65.
I.
Petousis
,
W.
Chen
,
G.
Hautier
,
T.
Graf
,
T. D.
Schladt
,
K. A.
Persson
, and
F. B.
Prinz
,
Phys. Rev. B
93
,
115151
(
2016
).
66.
P.
Ghosez
,
E.
Cockayne
,
U. V.
Waghmare
, and
K. M.
Rabe
,
Phys. Rev. B
60
,
836
(
1999
).
67.
D. L.
Dexter
,
Phys. Rev.
126
,
1962
(
1962
).
68.
A.
Takahashi
,
Y.
Kumagai
,
J.
Miyamoto
,
Y.
Mochizuki
, and
F.
Oba
,
Phys. Rev. Mater.
4
, 103801 (
2020
).
69.
G.
Gupta
,
T.
Nautiyal
, and
S.
Auluck
,
Phys. Rev. B
69
, 052101 (
2004
).
You do not currently have access to this content.