We have combined extensive density functional theory calculations with an evolutionary algorithm to investigate possible structural models for two-dimensional (2D) Pb films supported on the Al13Co4(100) quasicrystal approximant surface. The minimization of the total energy while maximizing the atomic density in the layer leads to 2D atomic arrangement with pentagonal motifs, reflecting the symmetry of the substrate. Our findings show that the 2D structure can be interpreted as a stable structure with 16 Pb atoms per surface cell in the film, in line with the measured coverage. This conclusion is also supported by the reasonable agreement between the experimental scanning tunneling microscopy images and those simulated using this structural model. Alternatively, a metastable 2D film made of 15 Pb atoms fits with the experimental observations. This study opens a route toward the prediction of supported complex 2D films.

1.
Z.
Fan
,
X.
Huang
,
C.
Tan
, and
H.
Zhang
,
Chem. Sci.
6
,
95
(
2015
).
2.
T.
Ling
,
J.-J.
Wang
,
H.
Zhang
,
S.-T.
Song
,
Y.-Z.
Zhou
,
J.
Zhao
, and
X.-W.
Du
,
Adv. Mater.
27
,
5396
(
2015
).
3.
Q.
Yu
and
Y.
Yang
,
ChemNanoMat
6
,
1683
(
2020
).
4.
F.
Bechstedt
,
P.
Gori
, and
O.
Pulci
,
Prog. Surf. Sci.
96
,
100615
(
2021
).
5.
P.
Rivero
,
J.-A.
Yan
,
V. M.
García-Suárez
,
J.
Ferrer
, and
S.
Barraza-Lopez
,
Phys. Rev. B
90
,
241408
(
2014
).
6.
X.-L.
Yu
,
L.
Huang
, and
J.
Wu
,
Phys. Rev. B
95
,
125113
(
2017
).
7.
Z.-Q.
Huang
,
C.-H.
Hsu
,
F.-C.
Chuang
,
Y.-T.
Liu
,
H.
Lin
,
W.-S.
Su
,
V.
Ozolins
, and
A.
Bansil
,
New J. Phys.
16
,
105018
(
2014
).
8.
T.
Wang
,
M.
Park
,
Q.
Yu
,
J.
Zhang
, and
Y.
Yang
,
Mater. Today Adv.
8
,
100092
(
2020
).
9.
W. B.
Su
,
C. S.
Chang
, and
T. T.
Tsong
,
J. Phys. D: Appl. Phys.
43
,
013001
(
2010
).
10.
T.
Deniozou
,
J.
Ledieu
,
V.
Fournée
,
D.
Wu
,
T. A.
Lograsso
,
H. T.
Li
, and
R. D.
Diehl
,
Phys. Rev. B
79
,
245405
(
2009
).
11.
J.
Yuhara
,
B.
He
,
N.
Matsunami
,
M.
Nakatake
, and
G.
LeLay
,
Adv. Mater.
31
,
1901017
(
2019
).
12.
R.
McGrath
,
H. R.
Sharma
,
J. A.
Smerdon
, and
J.
Ledieu
,
Philos. Trans. R. Soc. A
370
,
2930
(
2012
).
13.
Z. P. Cancarević,
J.
Schön
, and
M.
Jansen
,
Z. Kristalogr.
216
,
307
(
2001
).
14.
G. E.
Santoro
,
R.
Martonak
,
E.
Tosatti
, and
R.
Car
,
Science
295
,
2427
(
2002
).
15.
A.
Oganov
and
C.
Glass
,
J. Chem. Phys.
124
,
244704
(
2006
).
16.
D. M.
Deaven
and
K.-M.
Ho
,
Phys. Rev. Lett.
75
,
288
(
1995
).
17.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Comput. Phys. Commun.
183
,
2063
(
2012
).
18.
S.
Schönecker
,
X.
Li
,
B.
Johansson
,
S.-K.
Kwon
, and
L.
Vitos
,
Sci. Rep.
5
,
14860
(
2015
).
19.
X.-F.
Zhou
,
A. R.
Oganov
,
Z.
Wang
,
I. A.
Popov
,
A. I.
Boldyrev
, and
H.-T.
Wang
,
Phys. Rev. B
93
,
085406
(
2016
).
20.
A. B.
Mazitov
and
A. R.
Oganov
, “Evolutionary algorithm for prediction of the atomic structure of two-dimensional materials on substrates,” arXiv:2103.07677 (2021).
21.
R.
Addou
et al.,
New J. Phys.
13
,
103011
(
2011
).
22.
S.
Alarcón-Villaseca
,
J.-M.
Dubois
, and
E.
Gaudry
,
Int. J. Quantum Chem.
113
,
840
(
2013
).
23.
J.
Grin
,
U.
Burkhardt
,
M.
Ellner
, and
K.
Peters
,
J. Alloys Compd.
206
,
243
(
1994
).
24.
P.
Scheid
,
C.
Chatelier
,
J.
Ledieu
,
V.
Fournée
, and
E.
Gaudry
,
Acta Crystallogr. A
75
,
314
(
2019
).
25.
C.
Chatelier
,
Y.
Garreau
,
A.
Vlad
,
J.
Ledieu
,
A.
Resta
,
V.
Fournée
,
M.-C.
de Weerd
,
A.
Coati
, and
E.
Gaudry
,
ACS Appl. Mater. Interfaces
12
,
39787
(
2020
).
26.
H.
Shin
et al.,
Phys. Rev. B
84
,
085411
(
2011
).
27.
E.
Gaudry
et al.,
Phys. Rev. B
94
,
165406
(
2016
).
28.
C. W.
Glass
,
A. R.
Oganov
, and
N.
Hansen
,
Comput. Phys. Commun.
175
,
713
(
2006
).
29.
A. O.
Lyakhov
,
A. R.
Oganov
,
H. T.
Stokes
, and
Q.
Zhu
,
Comput. Phys. Commun.
184
,
1172
(
2013
).
30.
A. R.
Oganov
,
A. O.
Lyakhov
, and
M.
Valle
,
Acc. Chem. Res.
44
,
227
(
2011
).
31.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
32.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
33.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
34.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
35.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
37.
D.
Kandaskalov
,
V.
Fournée
,
J.
Ledieu
, and
E.
Gaudry
,
J. Phys. Chem. C
121
(34),
18738
18745
(
2017
).
38.
S. A.
Villaseca
,
J.-M.
Dubois
, and
É.
Gaudry
,
Int. J. Quantum Chem.
113
,
840
(
2013
).
39.
K.
Anand
,
V.
Fournée
,
G.
Prévot
,
J.
Ledieu
, and
E.
Gaudry
,
ACS Appl. Mater. Interfaces
12
,
15793
(
2020
).
40.
K.
Lejaeghere
,
V. V.
Speybroeck
,
G. V.
Oost
, and
S.
Cottenier
,
Crit. Rev. Solid State Mater. Sci.
39
,
1
(
2013
).
41.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
John Wiley & Sons
,
1996
).
42.
Y.
Han
,
K.
Lai
,
A.
Lii-Rosales
,
M.
Tringides
,
J.
Evans
, and
P.
Thiel
,
Surf. Sci.
685
,
48
(
2019
).
43.
J.
Wang
,
D. S. S.
Jeon
,
A.
Belianinov
,
S. V.
Kalinin
,
A. P.
Baddorf
, and
P.
Maksymovych
,
Nat. Commun.
7
,
13263
(
2016
).
44.
E.
Koren
,
E.
Lörtscher
,
C.
Rawlings
,
A. W.
Knoll
, and
U.
Duerig
,
Science
348
,
679
(
2015
).
45.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. Lett.
50
,
1998
(
1983
).
46.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. B
31
,
805
(
1985
).
47.
I.
Yeu
,
G.
Han
,
J.
Park
,
C.-S.
Hwang
, and
J.
Choi
,
Sci. Rep.
9
,
1127
(
2019
).
48.
D.
Yu
and
M.
Scheffler
,
Phys. Rev. B
70
,
155417
(
2004
).
49.
D.
Yu
,
H. P.
Bonzel
, and
M.
Scheffler
,
Phys. Rev. B
74
,
115408
(
2006
).
You do not currently have access to this content.