Previous experimental observations for H intercalation under graphene on SiC surfaces motivate the clarification of configuration stabilities and kinetic processes related to intercalation. From first-principles density-functional-theory calculations, we analyze H adsorption and intercalation for graphene on a 6H-SiC(0001) surface, where the system includes two single-atom-thick graphene layers: the top-layer graphene (TLG) and the underling buffer-layer graphene (BLG) above the terminal Si layer. Our chemical potential analysis shows that in the low-H coverage regime (described by a single H atom within a sufficiently large supercell), intercalation into the gallery between TLG and BLG or into the gallery underneath BLG is more favorable thermodynamically than adsorption on top of TLG. However, intercalation into the gallery between TLG and BLG is most favorable. We obtain energy barriers of about 1.3 and 2.3 eV for a H atom diffusing on and under TLG, respectively. From an additional analysis of the energy landscape in the vicinity of a step on the TLG, we assess how readily one guest H atom on the TLG terrace can directly penetrate the TLG into the gallery between TLG and BLG versus crossing a TLG step to access the gallery. We also perform density functional theory calculations for higher H coverages revealing a shift in favorability to intercalation of H underneath BLG and characterizing the variation with H coverage in interlayer spacings.

1.
G. R.
Yazdi
,
T.
Iakimov
, and
R.
Yakimova
,
Crystals
6
,
53
(
2016
).
2.
N.
Mishra
,
J.
Boeckl
,
N.
Motta
, and
F.
Iacopi
,
Phys. Status Solidi A
213
,
2277
(
2016
).
3.
M. S.
Stark
,
K. L.
Kuntz
,
S. J.
Martens
, and
S. C.
Warren
,
Adv. Mater.
31
,
1808213
(
2019
).
4.
L.
Daukiya
,
M. N.
Nair
,
M.
Cranney
,
F.
Vonau
,
S.
Hajjar-Garreau
,
D.
Aubel
, and
L.
Simon
,
Prog. Surf. Sci.
94
,
1
(
2019
).
5.
J.
Wan
,
S. D.
Lacey
,
J.
Dai
,
W.
Bao
,
M. S.
Fuhrer
, and
L.
Hu
,
Chem. Soc. Rev.
45
,
6742
(
2016
).
6.
C.
Riedl
,
C.
Coletti
,
T.
Iwasaki
,
A. A.
Zakharov
, and
U.
Starke
,
Phys. Rev. Lett.
103
,
246804
(
2009
).
7.
C.
Virojanadara
,
A. A.
Zakharov
,
R.
Yakimova
, and
L. I.
Johansson
,
Surf. Sci.
604
,
L4
(
2010
).
8.
S.
Watcharinyanon
,
C.
Virojanadara
,
J. R.
Osiecki
,
A. A.
Zakharov
,
R.
Yakimova
,
R. I. G.
Uhrberg
, and
L. I.
Johansson
,
Surf. Sci.
605
,
1662
(
2011
).
9.
J. A.
Robinson
,
M.
Hollander
,
M.
LaBella
,
K. A.
Trumbull
,
R.
Cavalero
, and
D. W.
Snyder
,
Nano Lett.
11
,
3875
(
2011
).
10.
F.
Speck
,
J.
Jobst
,
F.
Fromm
,
M.
Ostler
,
D.
Waldmann
,
M.
Hundhausen
,
H. B.
Weber
, and
T.
Seyller
,
Appl. Phys. Lett.
99
,
122106
(
2011
).
11.
S.
Tanabe
,
M.
Takamura
,
Y.
Harada
,
H.
Kageshima
, and
H.
Hibino
,
Appl. Phys. Express
5
,
125101
(
2012
).
12.
A.
Markevich
,
R.
Jones
,
S.
Öberg
,
M. J.
Rayson
,
J. P.
Goss
, and
P. R.
Briddon
,
Phys. Rev. B
86
,
045453
(
2012
).
13.
J. D.
Emery
,
V. D.
Wheeler
,
J. E.
Johns
,
M. E.
McBriarty
,
B.
Detlefs
,
M. C.
Hersam
,
D.
Kurt Gaskill
, and
M. J.
Bedzyk
,
Appl. Phys. Lett.
105
,
161602
(
2014
).
14.
G.
Sclauzero
and
A.
Pasquarello
,
Appl. Surf. Sci.
291
,
64
(
2014
).
15.
J.
Sforzini
 et al.,
Phys. Rev. Lett.
114
,
106804
(
2015
).
16.
Y.-P.
Lin
,
Y.
Ksari
, and
J.-M.
Themlin
,
Nano Res.
8
,
839
(
2015
).
17.
J.
Kunc
,
M.
Rejhon
, and
P.
Hlídek
,
AIP Adv.
8
,
045015
(
2018
).
18.
T. A.
de Jong
,
E. E.
Krasovskii
,
C.
Ott
,
R. M.
Tromp
,
S. J.
van der Molen
, and
J.
Jobst
,
Phys. Rev. Mater.
2
,
104005
(
2018
).
19.
X.
Liu
 et al.,
Prog. Surf. Sci.
90
,
397
(
2015
).
20.
A.
Lii-Rosales
 et al.,
Nanoscale
13
,
1485
(
2021
).
21.
Y.
Han
,
A.
Lii-Rosales
,
Y.
Zhou
,
C.-J.
Wang
,
M.
Kim
,
M. C.
Tringides
,
C.-Z.
Wang
,
P. A.
Thiel
, and
J. W.
Evans
,
Phys. Rev. Mater.
1
,
053403
(
2017
).
22.
A.
Lii-Rosales
,
Y.
Han
,
J. W.
Evans
,
D.
Jing
,
Y.
Zhou
,
M. C.
Tringides
,
M.
Kim
,
C.-Z.
Wang
, and
P. A.
Thiel
,
J. Phys. Chem. C
122
,
4454
(
2018
).
23.
A.
Lii-Rosales
 et al.,
Nanotechnology
29
,
505601
(
2018
).
24.
S. E.
Julien
,
A.
Lii-Rosales
,
K.-T.
Wan
,
Y.
Han
,
M. C.
Tringides
,
J. W.
Evans
, and
P. A.
Thiel
,
Nanoscale
11
,
6445
(
2019
).
25.
Y.
Han
,
A.
Lii-Rosales
,
M. C.
Tringides
,
J. W.
Evans
, and
P. A.
Thiel
,
Phys. Rev. B
99
,
115415
(
2019
).
26.
A.
Lii-Rosales
,
Y.
Han
,
K. C.
Lai
,
D.
Jing
,
M. C.
Tringides
,
J. W.
Evans
, and
P. A.
Thiel
,
J. Vac. Sci. Technol. A
37
,
061403
(
2019
).
27.
A.
Lii-Rosales
,
Y.
Han
,
S. E.
Julien
,
O.
Pierre-Louis
,
D.
Jing
,
K.-T.
Wan
,
M. C.
Tringides
,
J. W.
Evans
, and
P. A.
Thiel
,
New J. Phys.
22
,
023016
(
2020
).
28.
A.
Lii-Rosales
,
Y.
Han
,
D.
Jing
,
M. C.
Tringides
, and
P. A.
Thiel
,
Phys. Rev. Res.
2
,
033175
(
2020
).
29.
W.
Li
,
L.
Huang
,
M. C.
Tringides
,
J. W.
Evans
, and
Y.
Han
,
J. Phys. Chem. Lett.
11
,
9725
(
2020
).
30.
Y.
Han
,
A.
Lii-Rosales
,
M. C.
Tringides
, and
J. W.
Evans
,
J. Chem. Phys.
154
,
024703
(
2021
).
31.
N.
Briggs
 et al.,
Nanoscale
11
,
015440
(
2019
).
32.
Y.
Han
,
J. W.
Evans
, and
M. C.
Tringides
,
Phys. Rev. Mater.
5
,
074004
(
2021
).
33.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001343 for formulation of chemical potential, adsorption energy, binding energy, combination energy, and intercalation energy as well as DFT data for all figures.
34.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
011169
(
1996
).
35.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
36.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
J. Phys.: Condens. Mater.
22
,
022201
(
2010
).
37.
Y.
Han
,
K. C.
Lai
,
A.
Lii-Rosales
,
M. C.
Tringides
,
J. W.
Evans
, and
P. A.
Thiel
,
Surf. Sci.
685
,
48
(
2019
).
38.
Y.
Han
,
M. C.
Tringides
,
J. W.
Evans
, and
P. A.
Thiel
,
Phys. Rev. Res.
2
,
013182
(
2020
).
39.
Y.
Han
,
J. W.
Evans
, and
M. C.
Tringides
,
Appl. Phys. Lett.
119
,
033101
(
2021
).
40.
L. E.
Sutton
, Tables of interatomic distances and configuration in molecules and ions, Supplement 1956-1959, Special Publication No. 18 (The Chemical Society, London, 1965).
41.
G.
Herzberg
and
A.
Monfils
,
J. Mol. Spectrosc.
5
,
482
(
1960
).
42.
I.
Forbeaux
,
J.-M.
Themlin
, and
J.-M.
Debever
,
Phys. Rev. B
58
,
016396
(
1998
).
43.
T.
Ohta
,
A.
Bostwick
,
T.
Seyller
,
K.
Horn
, and
E.
Rotenberg
,
Science
313
,
951
(
2006
).
44.
A.
Mattausch
and
O.
Pankratov
,
Phys. Rev. Lett.
99
,
076802
(
2007
).
45.
S. J.
Sung
 et al.,
Nanoscale
6
,
3824
(
2014
).
46.
F.
Bisti
,
G.
Profeta
,
H.
Vita
,
M.
Donarelli
,
F.
Perrozzi
,
P. M.
Sheverdyaeva
,
P.
Moras
,
K.
Horn
, and
L.
Ottaviano
,
Phys. Rev. B
91
,
245411
(
2015
).
47.
N. M.
Caffrey
,
R.
Armiento
,
R.
Yakimova
, and
I. A.
Abrikosov
,
Phys. Rev. B
92
,
081409
(
2015
).
48.
M. N.
Nair
 et al.,
Phys. Rev. B
94
,
075427
(
2016
).
49.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
50.
B.
Butz
,
C.
Dolle
,
F.
Niekiel
,
K.
Weber
,
D.
Waldmann
,
H. B.
Weber
,
B.
Meyer
, and
E.
Spiecker
,
Nature
505
,
533
(
2014
).
51.
J. S.
Alden
,
A. W.
Tsen
,
P. Y.
Huang
,
R.
Hovden
,
L.
Brown
,
J.
Park
,
D. A.
Muller
, and
P. L.
McEuen
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
011256
(
2013
).
52.
H.
Hibino
,
S.
Mizuno
,
H.
Kageshima
,
M.
Nagase
, and
H.
Yamaguchi
,
Phys. Rev. B
80
,
085406
(
2009
).
53.
Y.
Han
,
J. W.
Evans
, and
F.
Liu
,
Phys. Rev. B
100
,
195405
(
2019
).
54.
W.-K.
Huang
,
K.-W.
Zhang
,
C.-L.
Yang
,
H.
Ding
,
X.
Wan
,
S.-C.
Li
,
J. W.
Evans
, and
Y.
Han
,
Nano Lett.
16
,
4454
(
2016
).
55.
B. D.
Hughes
,
Random Walks and Random Environments
(
Clarendon
,
Oxford
,
1995
), Vol. 1.
56.
A.
Yurtsever
 et al.,
Small
12
,
3956
(
2016
).
57.
S.
Chen
,
P. A.
Thiel
,
E.
Conrad
, and
M. C.
Tringides
,
Phys. Rev. Mater.
4
,
124005
(
2020
).
58.
Y.
Endo
,
Y.
Fukaya
,
I.
Mochizuki
,
A.
Takayama
,
T.
Hyodo
, and
S.
Hasegawa
,
Carbon
157
,
857
(
2020
).
59.
Y.
Zhang
 et al.,
Chem. Phys. Lett.
703
,
33
(
2018
).
60.
J. C.
Kotsakidis
 et al.,
Chem. Mater.
32
,
6464
(
2020
).
61.
K. V.
Emtsev
,
A. A.
Zakharov
,
C.
Coletti
,
S.
Forti
, and
U.
Starke
,
Phys. Rev. B.
84
,
125423
(
2011
).
62.
J.
Wang
,
M.
Kim
,
L.
Chen
,
K.-M.
Ho
,
M.
Tringides
,
C.-Z.
Wang
, and
S.
Wang
,
Phys. Rev. B.
103
,
085403
(
2021
).
63.
M.
Kim
,
M.
Hupalo
,
M. C.
Tringides
,
B.
Schrunk
,
A.
Kaminski
,
K.-M.
Ho
, and
C.-Z.
Wang
,
J. Phys. Chem. C.
124
,
028132
(
2020
).

Supplementary Material

You do not currently have access to this content.