A method for predicting interface termination between zinc oxide and various metals, in general, is discussed by extending the method previously proposed for the prediction of Al2O3–metal interface termination, which has been implemented as a free web-based software. Experimental results and first-principles calculations in references on the interface termination are carefully examined and compared with the predicted ones. It is demonstrated that the predicted results agree well with those experimental and calculated results. The method uses only basic parameters of pure elements and the formation enthalpy of oxides. Therefore, it can be applied for most of the metals in the periodic table.
REFERENCES
1.
U.
Alber
, H.
Mullejans
, and M.
Ruhle
, Micron
30
, 101
(1999
). 2.
V.
Merlin
and N.
Eustathopoulos
, J. Mater. Sci.
30
, 3619
(1995
). 3.
D.
Chantain
, F.
Chabert
, V.
Ghetta
, and J.
Fouletier
, J. Am. Ceram. Soc.
77
, 197
(1994
). 4.
S.
Shi
, S.
Tanaka
, and M.
Kohyama
, Mater. Trans.
47
, 2696
(2006
). 5.
K.
Shiraishi
, T.
Nakayama
, T.
Nakaoka
, A.
Ohta
, and S.
Miyazaki
, ECS Trans.
13
, 21
(2008
). 6.
T.
Nagata
, P.
Ahmet
, Y. Z.
Yoo
, K.
Yamada
, K.
Tsutsui
, Y.
Wada
, and T.
Chikyow
, Appl. Surf. Sci.
252
, 2503
(2006
). 7.
A.
Asthagiri
, C.
Niederberger
, A. J.
Francis
, L. M.
Porter
, P. A.
Salvador
, and D. S.
Sholl
, Surf. Sci.
537
, 134
(2003
). 8.
M.
Yoshitake
, S.
Yagyu
, and T.
Chikyow
, J. Vac. Sci. Technol. A
32
, 021102
(2014
). 9.
M.
Yoshitake
, S.
Yagyu
, and T.
Chikyow
, Int. J. Met.
2014
, 1
(2014
). 10.
11.
L. J.
Brillson
and Y.
Lu
, J. Appl. Phys.
109
, 121301
(2011
). 12.
K.
Ip
, G. T.
Thaler
, H.
Yang
, S. Y.
Han
, Y.
Li
, D. P.
Norton
, S. J.
Pearton
, S.
Jang
, and F.
Ren
, J. Cryst. Growth
287
, 149
(2006
). 13.
S. J.
Young
, L. W.
Ji
, S. J.
Chang
, and Y. K.
Su
, J. Cryst. Growth
293
, 43
(2006
). 14.
T. K.
Lin
, S. J.
Chang
, Y. K.
Su
, B. R.
Huang
, M.
Fujita
, and Y.
Horikoshi
, J. Cryst. Growth
281
, 513
(2005
). 15.
R.
Brydson
, H.
Mullejans
, J.
Bruley
, P. A.
Trusty
, X.
Sun
, J. A.
Yeomans
, and M.
Ruhle
, J. Microsc.
177
, 369
(1995
). 16.
C.
Scheu
, G.
Dehm
, H.
Mullejans
, and M.
Ruhle
, Mater. Sci. Forum
207–209
, 181
(1996
). 17.
G.
Dehm
, C.
Scheu
, M.
Ruhle
, and R.
Raj
, Acta Mater.
46
, 759
(1998
). 18.
M. L.
Muolo
, F.
Valenza
, A.
Passerone
, and D.
Passerone
, Mater. Sci. Eng.: A
495
, 153
(2008
). 19.
A. R.
Miedema
and J. W. F.
Dorleijn
, Surf. Sci.
95
, 447
(1980
). 21.
D. R.
Lide
, CRC Handbook of Chemistry and Physics
, 74th ed. (CRC
, Boca Raton
, 1993–1994
).22.
L.
Brewer
, Chem. Rev.
52
, 1
(1953
). 23.
P.
Brix
and G.
Herzberg
, Can. J. Phys.
32
, 110
(1954
). 24.
W.
Zhang
, J. R.
Smith
, and A. G.
Evans
, Acta Mater.
50
, 3803
(2002
). 25.
W.
Zhang
and J. R.
Smith
, Phys. Rev. Lett.
85
, 3225
(2000
). 26.
J.
Feng
, W.
Zhang
, and W.
Jiang
, Phys. Rev. B
72
, 115423
(2005
). 27.
P.
Blumentrit
, M.
Yoshitake
, S.
Nemšák
, T.
Kim
, and T.
Nagata
, Appl. Surf. Sci.
258
, 780
(2011
). 28.
M.
Yoshitake
, P.
Blumentrit
, and S.
Nemšák
, J. Vac. Sci. Technol. A
31
, 020601
(2013
). 29.
W. T.
Petrie
and J. M.
Vohs
, J. Chem. Phys.
101
, 8098
(1994
). 30.
T.
Nagata
et al., J. Appl. Phys.
107
, 103714
(2010
). 31.
M.
Yoshitake
, Y.-R.
Aparna
, and K.
Yoshihara
, J. Vac. Sci. Technol. A
19
, 1432
(2001
). 32.
A. M. A.
Rahman
and T.
Narusawa
, Nucl. Instrum. Methods Phys. Res., Sect. B
266
, 1378
(2008
). 33.
M.
Galeotti
, M.
Torrini
, U.
Bardi
, A.
Santucci
, and D.
Ghisletti
, Surf. Sci.
375
, 63
(1997
). 34.
I.
Spolveri
, A.
Atrei
, B.
Cortigiani
, U.
Bardi
, A.
Santucci
, and D.
Ghisletti
, Surf. Sci.
412–413
, 631
(1998
). 35.
D.
Wett
, A.
Demund
, H.
Schmidt
, and R.
Szargan
, Appl. Surf. Sci.
254
, 2309
(2008
). 36.
J.
Yoshihara
, J. M.
Campbell
, and C. T.
Campbell
, Surf. Sci.
406
, 235
(1998
). 37.
M.
Ay
, A.
Nefedov
, A.
Remhof
, and H.
Zabel
, Appl. Surf. Sci.
226
, 405
(2004
). 38.
S. V.
Didziulis
, K. D.
Butcher
, S. L.
Cohen
, and E. I.
Solomon
, J. Am. Chem. Soc.
111
, 7110
(1989
). 39.
C. T.
Campbell
, K. A.
Daube
, and J. M.
White
, Surf. Sci.
182
, 458
(1987
). 40.
F.
Wiame
, V.
Maurice
, and P.
Marcus
, Surf. Sci.
601
, 4402
(2007
). 41.
L.-W.
Yin
, M.-S.
Li
, Y.
Bando
, D.
Golberg
, X.
Yuan
, and T.
Sekiguchi
, Adv. Funct. Mater.
17
, 270
(2007
). 42.
H.
Jacobs
, W.
Mokwa
, D.
Kohl
, and G.
Heiland
, Surf. Sci.
160
, 217
(1985
). 43.
S.
Giorgio
, H.
Graoui
, C.
Chapon
, and C. R.
Henry
, Mater. Sci. Eng.: A
229
, 169
(1997
). 44.
W. P.
Vellinga
and J. Th. M.
De Hosson
, Acta Mater.
45
, 933
(1997
). 45.
C.
Borchers
, S.
Muller
, D.
Stichtenoth
, D.
Schwen
, and C.
Ronning
, J. Phys. Chem. B
110
, 1656
(2006
). 46.
M.
Wu
, W.-J.
Chen
, Y.-H.
Shen
, F.-Z.
Huang
, C.-H.
Li
, and S.-K.
Li
, Appl. Mater. Interfaces
6
, 15052
(2014
). 47.
K.
Nishidate
, M.
Yoshizawa
, and M.
Hasegawa
, Phys. Rev. B
77
, 035330
(2008
). 48.
B.
Meyer
and D.
Marx
, Phys. Rev. B
69
, 235420
(2004
). 49.
A.
Zaoui
, Phys. Rev. B
69
, 115403
(2004
). 50.
S.
Wei
, Z.
Wang
, and Z.
Yang
, Phys. Lett. A
363
, 327
(2007
). © 2021 Author(s). Published under an exclusive license by the AVS.
2021
Author(s)
You do not currently have access to this content.