The β-(AlxGa1−x)2O3 alloy represents an emerging ultrawide bandgap semiconductor material for applications in high-power electronics and deep ultraviolet optoelectronics. The recent demonstrations of orientation-dependent epitaxial growth of high quality β-(AlxGa1−x)2O3 films have unlocked prospects for the development of ultrahigh frequency β-(AlxGa1−x)2O3/Ga2O3 based transistors with high-power tolerance. To control the electronic and optical properties of β-(AlxGa1−x)2O3/Ga2O3 heterostructure-based devices, an understanding of the band offsets between β-(AlxGa1−x)2O3 and β-Ga2O3 is crucial. However, there have been no systematic experimental studies on the evolution of the band offsets between differently oriented β-(AlxGa1−x)2O3/Ga2O3 heterointerfaces as a function of Al compositions. This work presents the valence and conduction band offsets at (010) and (2¯01) oriented β-(AlxGa1−x)2O3/Ga2O3 interfaces using x-ray photoelectron spectroscopy. β-(AlxGa1−x)2O3 films with x ≤ 0.35 and x ≤ 0.48 were grown by metalorganic chemical vapor deposition on (010) and (2¯01) oriented β-Ga2O3 substrates, respectively. The determined band offsets reveal the formation of a type-II (staggered) band alignment at (010) oriented β-(AlxGa1−x)2O3/Ga2O3 and a type-I (straddling) heterojunction between (2¯01) β-(AlxGa1−x)2O3 and β-Ga2O3. For both crystalline orientations, the valence and conduction band offsets are found to increase with increasing Al content with a much weaker variation in the valence band offsets as compared to the conduction band offsets. Among different orientations investigated, such as (010), (2¯01), and (100), the largest conduction band offset occurs at a β-(AlxGa1−x)2O3/Ga2O3 interface with (100) orientation, providing opportunities for excellent electron confinement with a high-density two-dimensional electron gas. Results from this study on the tunable and orientation-dependent band offsets with the variation of the Al alloy fraction will provide guidance for the design of heterostructures in future β-(AlxGa1−x)2O3/Ga2O3 based devices.

1.
H.
Peelaers
,
J. B.
Varley
,
J. S.
Speck
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
112
,
242101
(
2018
).
2.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
3.
Z.
Feng
,
A. F. M.
Uddin Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
,
Appl. Phys. Lett.
114
,
250601
(
2019
).
4.
G.
Seryogin
,
F.
Alema
,
N.
Valente
,
H.
Fu
,
E.
Steinbrunner
,
A. T.
Neal
,
S.
Mou
,
A.
Fine
, and
A.
Osinsky
,
Appl. Phys. Lett.
117
,
262101
(
2020
).
5.
Z.
Feng
 et al,
Phys. Status Solidi RRL
14
,
2000145
(
2020
).
6.
J. B.
Varley
,
A.
Perron
,
V.
Lordi
,
D.
Wickramaratne
, and
J. L.
Lyons
,
Appl. Phys. Lett.
116
,
172104
(
2020
).
7.
S.
Krishnamoorthy
 et al,
Appl. Phys. Lett.
111
,
023502
(
2017
).
8.
Y.
Zhang
 et al,
Appl. Phys. Lett.
112
,
173502
(
2018
).
9.
N. K.
Kalarickal
 et al,
IEEE Trans. Electron Devices
68
,
29
(
2021
).
10.
P.
Ranga
,
A.
Bhattacharyya
,
A.
Rishinaramangalam
,
Y. K.
Ooi
,
M. A.
Scarpulla
,
D.
Feezell
, and
S.
Krishnamoorthy
,
Appl. Phys. Express
13
,
045501
(
2020
).
11.
P.
Ranga
,
A.
Bhattacharyya
,
A.
Chmielewski
,
S.
Roy
,
R.
Sun
,
M. A.
Scarpulla
,
N.
Alem
, and
S.
Krishnamoorthy
,
Appl. Phys. Express
14
,
025501
(
2021
).
12.
M.
Micovic
,
N. X.
Nguven
,
P.
Janke
,
W.-S.
Wong
,
P.
Hashimoto
,
L.-M.
McCray
, and
C.
Nguyen
,
Electron. Lett.
36
,
358
(
2000
).
13.
P. M.
Solomon
and
H.
Mork
,
IEEE Trans. Electron Devices
31
,
1015
(
1984
).
14.
T.
Oshima
,
Y.
Kato
,
N.
Kawano
,
A.
Kuramata
,
S.
Yamakoshi
,
S.
Fujita
,
T.
Oishi
, and
M.
Kasu
,
Appl. Phys. Express
10
,
035701
(
2017
).
15.
S. W.
Kaun
,
F.
Wu
, and
J. S.
Speck
,
J. Vac. Sci. Technol., A
33
,
041508
(
2015
).
16.
T.
Oshima
,
T.
Okuno
,
N.
Arai
,
Y.
Kobayashi
, and
S.
Fujita
,
Jpn. J. Appl. Phys.
48
,
070202
(
2009
).
17.
P.
Vogt
,
A.
Mauze
,
F.
Wu
,
B.
Bonef
, and
J. S.
Speck
,
Appl. Phys. Express
11
,
115503
(
2018
).
18.
A. F. M.
Anhar Uddin Bhuiyan
,
Z.
Feng
,
J. M.
Johnson
,
Z.
Chen
,
H.-L.
Huang
,
J.
Hwang
, and
H.
Zhao
,
Appl. Phys. Lett.
115
,
120602
(
2019
).
19.
A. F. M. A. U.
Bhuiyan
 et al,
APL Mater.
8
,
031104
(
2020
).
20.
A. F. M.
Anhar Uddin Bhuiyan
,
Z.
Feng
,
J. M.
Johnson
,
H.-L.
Huang
,
J.
Hwang
, and
H.
Zhao
,
Cryst. Growth Des.
20
,
6722
(
2020
).
21.
A. F. M. A. U.
Bhuiyan
,
Z.
Feng
,
J. M.
Johnson
,
H.-L.
Huang
,
J.
Hwang
, and
H.
Zhao
,
Appl. Phys. Lett.
117
,
252105
(
2020
).
22.
A. F. M. A. U.
Bhuiyan
,
Z.
Feng
,
J. M.
Johnson
,
H.-L.
Huang
,
J.
Hwang
, and
H.
Zhao
,
Appl. Phys. Lett.
117
,
142107
(
2020
).
23.
H.
Ghadi
 et al,
APL Mater.
8
,
021111
(
2020
).
24.
H.
Ghadi
,
J. F.
McGlone
,
Z.
Feng
,
A. F. M. A. U.
Bhuiyan
,
H.
Zhao
,
A. R.
Arehart
, and
S. A.
Ringel
,
Appl. Phys. Lett.
117
,
172106
(
2020
).
25.
T.
Wang
,
W.
Li
,
C.
Ni
, and
A.
Janotti
,
Phys. Rev. Appl.
10
,
011003
(
2018
).
26.
K.
Ghosh
and
U.
Singisetti
,
J. Mater. Res.
32
,
4142
(
2017
).
27.
J. M.
Johnson
 et al,
APL Mater.
9
,
051103
(
2021
).
28.
A. F. M. A. U.
Bhuiyan
 et al,
APL Mater.
8
,
089102
(
2020
).
29.
J.
Sarker
,
S.
Broderick
,
A. F. M. A. U.
Bhuiyan
,
Z.
Feng
,
H.
Zhao
, and
B.
Mazumder
,
Appl. Phys. Lett.
116
,
152101
(
2020
).
30.
E. A.
Kraut
,
R. W.
Grant
,
J. R.
Waldrop
, and
S. P.
Kowalczyk
,
Phys. Rev. Lett.
44
,
1620
(
1980
).
31.
G.
Martin
,
S.
Strite
,
A.
Botchkarev
,
A.
Agarwal
,
A.
Rockett
,
H.
Morkoc
,
W. R. L.
Lambrecht
, and
B.
Segall
,
Appl. Phys. Lett.
65
,
610
(
1994
).
32.
X.
Xua
,
X.
Liub
,
Y.
Guo
,
J.
Wang
,
H.
Song
,
S.
Yang
,
H.
Wei
,
Q.
Zhuc
, and
Z.
Wang
,
J. Appl. Phys.
107
,
104510
(
2010
).
33.
K.
Konishi
,
T.
Kamimura
,
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Phys. Status Solidi B
253
,
623
(
2016
).
34.
M.
Hattori
 et al,
Jpn. J. Appl. Phys.
55
,
1202B6
(
2016
).
35.
T.
Kamimura
,
K.
Sasaki
,
M. H.
Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
104
,
192104
(
2014
).
36.
T.-H.
Hung
,
K.
Sasaki
,
A.
Kuramata
,
D. N.
Nath
,
P. S.
Park
,
C.
Polchinski
, and
S.
Rajan
,
Appl. Phys. Lett.
104
,
162106
(
2014
).
37.
P. H.
Carey
, IV
,
F.
Ren
,
D. C.
Hays
,
B. P.
Gila
,
S. J.
Pearton
,
S.
Jang
, and
A.
Kuramata
,
Vacuum
142
,
52
(
2017
).
38.
C.
Fares
,
F.
Ren
,
E.
Lambers
,
D. C.
Hays
,
B. P.
Gila
, and
S. J.
Pearton
,
J. Electron. Mater.
48
,
1568
(
2019
).
39.
Z.
Feng
,
Q.
Feng
,
J.
Zhang
,
X.
Li
,
F.
Li
,
L.
Huang
,
H.-Y.
Chen
,
H.-L.
Lu
, and
Y.
Hao
,
Appl. Surf. Sci.
434
,
440
(
2018
).
40.
C.
Fares
,
M.
Kneiß
,
H.
von Wenckstern
,
M.
Tadjer
,
F.
Ren
,
E.
Lambers
,
M.
Grundmann
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
8
,
P351
(
2019
).
41.
Z.
Feng
 et al,
J. Alloys Compd.
745
,
292
(
2018
).
42.
S.
Mu
,
H.
Peelaers
,
Y.
Zhang
,
M.
Wang
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
117
,
252104
(
2020
).
43.
T.
Schultz
,
M.
Kneiß
,
P.
Storm
,
D.
Splith
,
H.
von Wenckstern
,
M.
Grundmann
, and
N.
Koch
,
ACS Appl. Mater. Interfaces
12
,
8879
(
2020
).
44.
M. T.
Nichols
,
W.
Li
,
D.
Pei
,
G. A.
Antonelli
,
Q.
Lin
,
S.
Banna
,
Y.
Nishi
, and
J. L.
Shohet
,
J. Appl. Phys.
115
,
094105
(
2014
).
45.
T.
Uchida
,
R.
Jinno
,
S.
Takemoto
,
K.
Kaneko
, and
S.
Fujita
,
Jpn. J. Appl. Phys.
57
,
040314
(
2018
).
46.
S. B.
Zhang
,
M. L.
Cohen
,
S. G.
Louie
,
D.
Tomanek
, and
M. S.
Hybersen
,
Phys. Rev. B
41
,
10058
(
1990
).
47.
A.
Ichii
,
Y.
Tsou
, and
E.
Garmire
,
J. Appl. Phys.
74
,
2112
(
1993
).
48.
J. R.
Waldrop
and
R. W.
Grant
,
Appl. Phys. Lett.
68
,
2879
(
1996
).
49.
K.
Yamaguchi
,
Solid State Commun.
131
,
739
(
2004
).
50.
S.
Mu
,
M.
Wang
,
H.
Peelaers
, and
C. G.
Van de Walle
,
APL Mater.
8
,
091105
(
2020
).
51.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001260 for the XRD ω-2θ scans for (010) and (2¯01) β-(AlxGa1−x)2O3 alloys with different Al compositions, XPS survey spectra, summary of Al compositions determined using Ga 3s and Al 2s/Al 2p core-level spectra, and the comparison between the experimental and theoretical band offsets.

Supplementary Material

You do not currently have access to this content.