CO and CO2 plasmas were used to modify SnO2 nanoparticles (NPs) to understand the role of key gas-phase species and to explore a potential route for improving these materials as solid-state gas sensors. Excited state species in both plasmas were monitored using optical emission spectroscopy and the NP were analyzed after plasma exposure with x-ray photoelectron spectroscopy. These studies reveal that in the CO2 plasma, CO2 decomposes to CO and O, leading to etching of the SnO2 lattice. Conversely, in the CO plasma, very little O is formed, leading to the deposition of a carbonaceous film on the SnO2 NP. Sensors fabricated with the CO2 modified SnO2 NP demonstrate a higher response to CO, benzene, and ethanol and improved response and recovery behavior when compared with untreated devices. CO plasma modification, however, had a detrimental effect on the gas sensing performance of this material.

1.
I.
Adamovich
 et al.,
J. Phys. D Appl. Phys.
50
,
323001
(
2017
).
2.
G.
Sahoo
,
S. R.
Polaki
,
S.
Ghosh
,
N. G.
Krishna
,
M.
Kamruddin
, and
K.
Ostrikov
,
Energy Storage Mater.
14
,
297
(
2018
).
3.
W.
Zhao
 et al.,
Nanotechnology
23
,
425502
(
2012
).
4.
M. N.
Mann
and
E. R.
Fisher
,
ACS Appl. Mater. Interfaces.
9
,
36548
(
2017
).
5.
R.
d'Agostino
,
F.
Cramarossa
,
F.
Fracassi
, and
F.
Illuzzi
, “
Plasma polymerization of fluorocarbons
,” in
Plasma Deposition, Treatment, and Etching of Polymers
, edited by R. d'Agostino (
Academic
,
San Diego
,
1990
), pp.
95
162
.
6.
M. J.
Hawker
,
A.
Pegalajar-Jurado
, and
E. R.
Fisher
,
Langmuir
30
,
12328
(
2014
).
8.
Y.
Yasuoka
,
T.
Harigai
,
J.-S.
Oh
,
H.
Furuta
,
A.
Hatta
,
T.
Suzuki
, and
H.
Saitoh
,
Jpn. J. Appl. Phys.
54
,
01AD04
(
2014
).
9.
I.
Kazuomi
,
I.
Toshimichi
, and
H.
Ikuo
,
Chem. Lett.
17
,
589
(
1988
).
10.
M. A. A.
Mamun
,
H.
Furuta
, and
A.
Hatta
,
Mater. Today Commun.
14
,
40
(
2018
).
11.
L. J. E.
Hofer
,
E.
Sterling
, and
J. T.
McCartney
,
J. Phys. Chem.
59
,
1153
(
1955
).
12.
X.
Liang
,
L.
Wang
, and
D.
Yang
,
Mater. Lett.
60
,
730
(
2006
).
13.
S. K.
Kwon
,
K. N.
Kim
,
C. W.
Nam
, and
S. I.
Woo
,
J. Vac. Sci. Technol. B
13
,
914
(
1995
).
14.
A.
Dey
,
Mater. Sci. Eng. B
229
,
206
(
2018
).
15.
K.
Ihokura
and
J.
Watson
,
The Stannic Oxide Gas Sensor: Principles and Applications
(
CRC
,
Boca Raton
,
1994
).
16.
R. J.
Behm
,
P. A.
Thiel
,
P. R.
Norton
, and
G.
Ertl
,
J. Chem. Phys.
78
,
7437
(
1983
).
17.
S. L.
Chang
and
P. A.
Thiel
,
J. Chem. Phys.
88
,
2071
(
1988
).
18.
M. R.
Columbia
,
A. M.
Crabtree
, and
P. A.
Thiel
,
J. Am. Chem. Soc.
114
,
1231
(
1992
).
19.
R. G.
Tobin
,
S.
Chiang
,
P. A.
Thiel
, and
P. L.
Richards
,
Surf. Sci.
140
,
393
(
1984
).
20.
M. R.
Columbia
and
P. A.
Thiel
,
Surf. Sci.
235
,
53
(
1990
).
21.
X.
Liu
,
N.
Chen
,
B.
Han
,
X.
Xiao
,
G.
Chen
,
I.
Djerdj
, and
Y.
Wang
,
Nanoscale
7
,
14872
(
2015
).
22.
X.
Kou
 et al.,
Sens. Actuators B
320
,
128292
(
2020
).
23.
K. A. M.
Hiyoto
and
E. R.
Fisher
,
J. Vac. Sci. Technol. A
38
,
043202
(
2020
).
24.
E. P.
Stuckert
and
E. R.
Fisher
,
Sens. Actuators B
208
,
379
(
2015
).
25.
E. P.
Stuckert
,
C. J.
Miller
, and
E. R.
Fisher
,
ACS Appl. Mater. Interfaces
9
,
15733
(
2017
).
26.
E. P.
Stuckert
,
C. J.
Miller
, and
E. R.
Fisher
,
J. Vac. Sci. Technol. B
35
,
021802
(
2017
).
27.
K. H. A.
Bogart
,
N. F.
Dalleska
,
G. R.
Bogart
, and
E. R.
Fisher
,
J. Vac. Sci. Technol. A
13
,
476
(
1995
).
28.
L. F.
Spencer
and
A. D.
Gallimore
,
Plasma Chem. Plasma Process.
31
,
79
(
2011
).
29.
A.
George
,
B.
Shen
,
M.
Craven
,
Y.
Wang
,
D.
Kang
,
C.
Wu
, and
X.
Tu
,
Renew. Sustain. Energy Rev.
135
,
109702
(
2021
).
30.
A. S.
Morillo-Candas
,
V.
Guerra
, and
O.
Guaitella
,
J. Phys. Chem. C
124
,
17459
(
2020
).
31.
P. G.
Reyes
,
E. F.
Mendez
,
D.
Osorio-Gonzalez
,
F.
Castillo
, and
H.
Martínez
,
Phys. Status Solidi C
5
,
907
(
2008
).
32.
Q.
Huang
,
D.
Zhang
,
D.
Wang
,
K.
Liu
, and
A. W.
Kleyn
,
J. Phys. D Appl. Phys.
50
,
294001
(
2017
).
33.
R. W. B.
Pearse
and
A. G.
Gaydon
,
Identification of Molecular Spectra
(
Chapman and Hall
, London,
1976
).
34.
R.
Geiger
and
D.
Staack
,
J. Phys. D Appl. Phys.
44
,
274005
(
2011
).
35.
D. J. V.
Pulsipher
and
E. R.
Fisher
,
Surf. Coat. Technol.
203
,
2236
(
2009
).
36.
H.-Y.
Yu
,
Y.-J.
Xie
,
M.-X.
Hu
,
J.-L.
Wang
,
S.-Y.
Wang
, and
Z.-K.
Xu
,
J. Membr. Sci.
254
,
219
(
2005
).
37.
D. S.
Wavhal
and
E. R.
Fisher
,
Desalination
172
,
189
(
2005
).
38.
B. D.
Tompkins
,
J. M.
Dennison
, and
E. R.
Fisher
,
Plasma Process. Polym.
11
,
850
(
2014
).
39.
I.
Gancarz
,
G.
Poźniak
, and
M.
Bryjak
,
Eur. Polym. J.
35
,
1419
(
1999
).
40.
N.
Gallegos
and
M.
Jessica
,
Lange's Handbook of Chemistry
, 15th ed. (
McGraw Hill Education
,
New York
,
1999
).
41.
A. A.
Nimbekar
and
R. R.
Deshmukh
,
J. Mater. Sci. Mater. Electron.
32
,
59
(
2021
).
42.
K.
Hu
,
F.
Wang
,
Z.
Shen
,
H.
Liu
,
W.
Zeng
, and
Y.
Wang
,
Ceram. Int.
46
,
21439
(
2020
).
43.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001326 for raw OES spectra, relative species densities, FTIR spectra, and XPS spectra.

Supplementary Material

You do not currently have access to this content.