A single layer of Fe silicate was grown on Pd(111) and analyzed experimentally and theoretically. Following sequential deposition of SiO and Fe and annealing above 900 K in O2, an incommensurate but well-ordered, low-defect density layer was observed with low-energy electron diffraction and scanning tunneling microscopy (STM). The STM images revealed a moiré pattern due to the lattice mismatch between the relaxed oxide layer and the substrate, while high-resolution images showed a honeycomb structure consistent with a silicate layer with six-membered rings of corner-sharing SiO4 tetrahedra at its surface. Reflection-absorption infrared spectroscopy revealed a single peak at 1050 cm−1 due to Si–O–Fe linkages, while x-ray photoelectron spectroscopy data indicated a Si/Fe ratio of one, that the Fe were all 3+, and that the Si atoms were closest to the surface. Consistent with these experimental observations, first principles theory identified a layer with an overall stoichiometry of Fe2Si2O9 with the six-membered rings of SiO4 tetrahedra at the surface. One of the oxygen atoms appears as a chemisorbed atom on the Pd surface, and, thus, the layer is better described as Fe2Si2O8 atop an oxygen-covered Pd surface. The Fe2Si2O8 is chemically bound to the Pd surface through its oxygen atoms; and the passivation of these bonds by hydrogen was investigated theoretically. Upon hydrogenation, the adsorbed O atom joins the Fe silicate layer and thermodynamic analysis indicates that, at room temperature and H2 pressures below 1 atm, Fe2Si2O9H4 becomes favored. The hydrogenation is accompanied by a substantial increase in the equilibrium distance between the oxide layer and the Pd surface and a drop in the adhesion energy to the surface. Together the results indicate that a highly ordered 2D Fe silicate can be grown on Pd(111) and that subsequent hydrogenation of this layer offers potential to release the 2D material from the growth substrate.

1.
G. S.
Hutchings
,
J. H.
Jhang
,
C.
Zhou
,
D.
Hynek
,
U. D.
Schwarz
, and
E. I.
Altman
,
ACS Appl. Mater. Interfaces
9
,
11266
(
2017
).
2.
G.
Pacchioni
,
Chem. A Eur. J.
18
,
10144
(
2012
).
3.
W.
Ding
,
J.
Zhu
,
Z.
Wang
,
Y.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z.
Zhang
, and
W.
Zhu
,
Nat. Commun.
8
,
1
(
2017
).
4.
G.
Li
,
Y. Y.
Zhang
,
H.
Guo
,
L.
Huang
,
H.
Lu
,
X.
Lin
,
Y. L.
Wang
,
S.
Du
, and
H. J.
Gao
,
Chem. Soc. Rev.
47
,
6073
(
2018
).
5.
B.
Dubertret
,
T.
Heine
, and
M.
Terrones
,
Acc. Chem. Res.
48
,
1
(
2015
).
6.
P.
Ajayan
,
P.
Kim
, and
K.
Banerjee
,
Phys. Today
69
,
38
(
2016
).
7.
S.
Zhang
,
R.
Xu
,
N.
Luo
, and
X.
Zou
,
Nanoscale
13
,
1398
(
2021
).
8.
G.
Fiori
,
F.
Bonaccorso
,
G.
Iannaccone
,
T.
Palacios
,
D.
Neumaier
,
A.
Seabaugh
,
S. K.
Banerjee
, and
L.
Colombo
,
Nat. Nanotechnol.
9
,
768
(
2014
).
9.
J.
Zhao
,
D.
Ma
,
C.
Wang
,
Z.
Guo
,
B.
Zhang
,
J.
Li
,
G.
Nie
,
N.
Xie
, and
H.
Zhang
,
Nano Res.
14
,
897
(
2021
).
10.
Q.
Wang
 et al.,
Nano Lett.
15
,
1183
(
2015
).
11.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
,
Science
353
,
461
(
2016
).
12.
D.
Löffler
 et al.,
Phys. Rev. Lett.
105
,
146104
(
2010
).
13.
X.
Yu
,
B.
Yang
,
J.
Anibal Boscoboinik
,
S.
Shaikhutdinov
, and
H. J.
Freund
,
Appl. Phys. Lett.
100
,
151608
(
2012
).
14.
J. H.
Jhang
,
C.
Zhou
,
O. E.
Dagdeviren
,
G. S.
Hutchings
,
U. D.
Schwarz
, and
E. I.
Altman
,
Phys. Chem. Chem. Phys.
19
,
14001
(
2017
).
15.
E. I.
Altman
,
J.
Götzen
,
N.
Samudrala
, and
U. D.
Schwarz
,
J. Phys. Chem. C
117
,
26144
(
2013
).
16.
C.
Büchner
and
M.
Heyde
,
Prog. Surf. Sci.
92
,
341
(
2017
).
17.
J. A.
Boscoboinik
,
X.
Yu
,
B.
Yang
,
F. D.
Fischer
,
R.
Wodarczyk
,
M.
Sierka
,
S.
Shaikhutdinov
,
J.
Sauer
, and
H. J.
Freund
,
Angew. Chem. Int. Ed.
51
,
6005
(
2012
).
18.
C. J.
Dawson
,
M. A. B.
Pope
,
M.
O’Keeffe
, and
M. M. J.
Treacy
,
Chem. Mater.
25
,
3816
(
2013
).
19.
A.
Malashevich
,
S.
Ismail-Beigi
, and
E. I.
Altman
,
J. Phys. Chem. C
120
,
26770
(
2016
).
20.
H.
Tissot
,
L.
Li
,
S.
Shaikhutdinov
, and
H. J.
Freund
,
Phys. Chem. Chem. Phys.
18
,
25027
(
2016
).
21.
F. D.
Fischer
,
J.
Sauer
,
X.
Yu
,
J. A.
Boscoboinik
,
S.
Shaikhutdinov
, and
H. J.
Freund
,
J. Phys. Chem. C
119
,
15443
(
2015
).
22.
R.
Włodarczyk
,
J.
Sauer
,
X.
Yu
,
J. A.
Boscoboinik
,
B.
Yang
,
S.
Shaikhutdinov
, and
H. J.
Freund
,
J. Am. Chem. Soc.
135
,
19222
(
2013
).
23.
C.
Zhou
,
X.
Liang
,
G. S.
Hutchings
,
Z. S.
Fishman
,
J. H.
Jhang
,
M.
Li
,
U. D.
Schwarz
,
S.
Ismail-Beigi
, and
E. I.
Altman
,
Chem. Mater.
31
,
851
(
2019
).
24.
C.
Zhou
 et al.,
Nanoscale
11
,
21340
(
2019
).
25.
C. D.
Barton
and
A. D.
Karathanasis
, “
Clay minerals,” in Encyclopedia of Soil Science, edited by R. Lal (Marcel Dekker, NY, 2002), p. 187.
26.
K.
Saritas
,
N.
Doudin
,
E. I.
Altman
, and
S.
Ismail-Beigi
,
Phys. Rev. Mater.
(submitted).
27.
H. D.
Zhou
 et al.,
Chem. Mater.
21
,
156
(
2009
).
28.
O.
Ballet
and
J. M. D.
Coey
,
Phys. Chem. Miner.
8
,
218
(
1982
).
29.
B.
Rasmussen
,
J. R.
Muhling
, and
W. W.
Fischer
,
Astrobiology
21
,
246
(
2021
).
30.
J. R.
Muhling
and
B.
Rasmussen
,
Precambrian Res.
339
,
105619
(
2020
).
31.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
,
Science
353
,
aac9439
(
2016
).
33.
A. L.
Lewandowski
 et al.,
Chem. A Eur. J.
27
,
1870
(
2021
).
34.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
35.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
137
,
A1697
(
1965
).
36.
C. Y.
Nakakura
,
V. M.
Phanse
,
G.
Zheng
,
G.
Bannon
,
E. I.
Altman
, and
K. P.
Lee
,
Rev. Sci. Instrum.
69
,
3251
(
1998
).
37.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
38.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B Condens. Matter
54
,
11169
(
1996
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
40.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
41.
A.
Jain
,
G.
Hautier
,
S. P.
Ong
,
C. J.
Moore
,
C. C.
Fischer
,
K. A.
Persson
, and
G.
Ceder
,
Phys. Rev. B
84
,
045115
(
2011
).
42.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
11
(
1999
).
43.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. B
46
,
16067
(
1992
).
44.
See https://materials.springer.com/isp/crystallographic/docs/sd_0250185 from “Pd Crystal Structure: Datasheet from ‘PAULING FILE Multinaries Edition—2012’ in Springer Materials.”
45.
D.
Karhánek
,
T.
Bučko
, and
J.
Hafner
,
J. Phys.: Condens. Matter
22
,
265006
(
2010
).
46.
V. A.
Cox
,
J. D.
Wagman
, and
D. D.
Medvedev
,
CODATA Key Values for Thermodynamics
(Hemisphere Publishing Corp.,
1984
).
47.
K.
Reuter
and
M.
Scheffler
,
Phys. Rev. B
65
,
035406
(
2002
).
48.
G.
Delhaye
,
C.
Merckling
,
M.
El-Kazzi
,
G.
Saint-Girons
,
M.
Gendry
,
Y.
Robach
,
G.
Hollinger
,
L.
Largeau
, and
G.
Patriarche
,
J. Appl. Phys.
100
,
124109
(
2006
).
49.
B.
Yang
 et al.,
Phys. Chem. Chem. Phys.
14
,
11344
(
2012
).
50.
J. C.
Wang
,
J.
Ren
,
H. C.
Yao
,
L.
Zhang
,
J. S.
Wang
,
S. Q.
Zang
,
L. F.
Han
, and
Z. J.
Li
,
J. Hazard. Mater.
311
,
11
(
2016
).
51.
T.
Fujii
,
F. M. F.
de Groot
,
G. A.
Sawatzky
,
F. C.
Voogt
,
T.
Hibma
, and
K.
Okada
,
Phys. Rev. B
59
,
3195
(
1999
).
52.
P.
Li
,
E. Y.
Jiang
, and
H. L.
Bai
,
J. Phys. D: Appl. Phys.
44
,
075003
(
2011
).
53.
T.
Yamashita
and
P.
Hayes
,
Appl. Surf. Sci.
254
,
2441
(
2008
).
54.
J. H.
Jhang
,
J. A.
Boscoboinik
, and
E. I.
Altman
,
J. Chem. Phys.
152
,
084705
(
2020
).
55.
R.
Włodarczyk
 et al.,
Phys. Rev. B
85
,
085403
(
2012
).
56.
D.
Zemlyanov
 et al.,
Surf. Sci.
600
,
983
(
2006
).
57.
M.
Todorova
,
K.
Reuter
, and
M.
Scheffler
,
J. Phys. Chem. B
108
,
14477
(
2004
).
58.
N.
Mounet
 et al.,
Nat. Nanotechnol.
13
,
246
(
2018
).
You do not currently have access to this content.