The atomic scale friction properties of water layers are a highly important subject for understanding the lubricating mechanism of ice. Recently, two-dimensional (2D) materials gave rise to an excellent platform for investigating the tribological properties of water, since water layers can be easily intercalated between 2D layers and hydrophilic substrates. In this Review, we highlight recent research on the friction properties of the confined water between hydrophilic (mica and silica) substrates and 2D materials. Recent friction force microscopy work has revealed the nanotribological properties of water intercalated between 2D materials (e.g., graphene and MoS2), and a hydrophilic substrate increases the friction force. Moreover, the friction on both graphene and MoS2 increased as the number of stacking water layers increased. On the other hand, the magnitude of friction increase went down as the number of covering 2D layers above the intercalated water layer increased; the friction is eventually indistinguishable from the multilayer stack excluded water adsorption. The isotope effect of frictional enhancement has been addressed, and it was shown that the intercalation of deuterium oxide (D2O) leads to the decrease of friction at H2O intercalated graphene on mica due to the lower vibrational frequency of D2O adsorbate, which is associated with the low rate of frictional energy dissipation at the interface. Water exfoliated by 2D layers prepared with mechanical exfoliation and chemical vapor deposition exhibits similar frictional enhancement, indicating the universal tendency of friction by intercalated water between 2D atomic layers and hydrophilic surfaces.

1.
B. N. J.
Persson
,
Sliding Friction: Physical Principles and Applications
(
Springer
,
Berlin
,
1999
).
3.
J. Y.
Park
and
M.
Salmeron
,
Chem. Rev.
114
,
677
(
2014
).
4.
R. J.
Cannara
,
M. J.
Brukman
,
K.
Cimatu
,
A. V.
Sumant
,
S.
Baldelli
, and
R. W.
Carpick
,
Science
318
,
780
(
2007
).
5.
M.
Kisiel
,
E.
Gnecco
,
U.
Gysin
,
L.
Marot
,
S.
Rast
, and
E.
Meyer
,
Nat. Mater.
10
,
119
(
2011
).
6.
J. Y.
Park
,
D. F.
Ogletree
,
P. A.
Thiel
, and
M.
Salmeron
,
Science
313
,
186
(
2006
).
7.
J. Y.
Park
,
D. F.
Ogletree
,
M.
Salmeron
,
R. A.
Ribeiro
,
P. C.
Canfield
,
C. J.
Jenks
, and
P. A.
Thiel
,
Science
309
,
1354
(
2005
).
8.
J. Y.
Park
,
D. F.
Ogletree
,
M.
Salmeron
,
R. A.
Ribeiro
,
P. C.
Canfield
,
C. J.
Jenks
, and
P. A.
Thiel
,
Phys. Rev. B
74
,
024203
(
2006
).
9.
J. Y.
Park
and
P. A.
Thiel
,
J. Phys.: Condens. Matter
20
,
314012
(
2008
).
10.
P. A.
Thiel
and
T. E.
Madey
,
Surf. Sci. Rep.
7
,
211
(
1987
).
11.
C. N. R.
Rao
,
Theory of Hydrogen Bonding in Water
(
Springer
,
Boston
,
MA
,
1972
).
12.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
72
,
238
(
1994
).
13.
A.
Novak
,
Hydrogen Bonding in Solids Correlation of Spectroscopic and Crystallographic Data
(
Springer
,
Berlin
,
1974
).
15.
C. Y.
Lee
,
J. A.
Mccammon
, and
P. J.
Rossky
,
J. Chem. Phys.
80
,
4448
(
1984
).
16.
E.
Spohr
,
J. Phys. Chem.
93
,
6171
(
1989
).
17.
K.
Raghavan
,
K.
Foster
, and
M.
Berkowitz
,
Chem. Phys. Lett.
177
,
426
(
1991
).
18.
S. C.
Park
,
E. S.
Moon
, and
H.
Kang
,
Phys. Chem. Chem. Phys.
12
,
12000
(
2010
).
19.
F.
Franks
,
The Properties of Ice
(
Springer
,
Boston
,
MA
,
1972
).
20.
H. Y.
Zhao
,
S.
Bhattacharjee
,
R.
Chow
,
D.
Wallace
,
J. H.
Masliyah
, and
Z. H.
Xu
,
Langmuir
24
,
12899
(
2008
).
21.
V. R.
Rothbauer
,
Neues Jahrb. für Mineral. Monatshefte
4
,
143
(
1971
).
22.
M.
Odelius
,
M.
Bernasconi
, and
M.
Parrinello
,
Phys. Rev. Lett.
78
,
2855
(
1997
).
23.
J.
Hu
,
X. D.
Xiao
,
D. F.
Ogletree
, and
M.
Salmeron
,
Science
268
,
267
(
1995
).
24.
P. G.
Cao
,
K.
Xu
,
J. O.
Varghese
, and
J. R.
Heath
,
J. Am. Chem. Soc.
133
,
2334
(
2011
).
25.
B.
Rezania
,
M.
Dorn
,
N.
Severin
, and
J. P.
Rabe
,
J. Colloid Interface Sci.
407
,
500
(
2013
).
26.
C.
Spagnoli
,
K.
Loos
,
A.
Ulman
, and
M. K.
Cowman
,
J. Am. Chem. Soc.
125
,
7124
(
2003
).
27.
Q.
Li
,
J.
Song
,
F.
Besenbacher
, and
M. D.
Dong
,
Acc. Chem. Res.
48
,
119
(
2015
).
28.
H.
Li
and
X. C.
Zeng
,
J. Chem. Theory Comput.
8
,
3034
(
2012
).
29.
R. W.
Carpick
and
M.
Salmeron
,
Chem. Rev.
97
,
1163
(
1997
).
30.
K.
Xu
,
P. G.
Cao
, and
J. R.
Heath
,
Science
329
,
1188
(
2010
).
31.
J. S.
Kim
 et al.,
Sci. Rep.
3
,
1
(
2013
).
32.
J.
Hu
,
X. D.
Xiao
,
D. F.
Ogletree
, and
M.
Salmeron
,
Surf. Sci.
344
,
221
(
1995
).
33.
T.
Gowthami
,
G.
Tamilselvi
,
G.
Jacob
, and
G.
Raina
,
Phys. Chem. Chem. Phys.
17
,
13964
(
2015
).
34.
S.
Shin
and
A. P.
Willard
,
J. Phys. Chem. B
122
,
6781
(
2018
).
35.
T.
Lim
,
J.
Bong
,
E. M.
Mills
,
S.
Kim
, and
S.
Ju
,
ACS Appl. Mater. Interfaces
7
,
16296
(
2015
).
36.
G.
Tocci
,
L.
Joly
, and
A.
Michaelides
,
Nano Lett.
14
,
6872
(
2014
).
37.
T.
Filleter
,
J. L.
McChesney
,
A.
Bostwick
,
E.
Rotenberg
,
K. V.
Emtsev
,
T.
Seyller
,
K.
Horn
, and
R.
Bennewitz
,
Phys. Rev. Lett.
102
,
086102
(
2009
).
38.
E.
Gnecco
,
R.
Bennewitz
,
T.
Gyalog
, and
E.
Meyer
,
J. Phys.: Condens. Matter
13
,
R619
(
2001
).
39.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
40.
N.
Severin
,
P.
Lange
,
I. M.
Sokolov
, and
J. P.
Rabe
,
Nano Lett.
12
,
774
(
2012
).
41.
H.
Bluhm
,
T.
Inoue
, and
M.
Salmeron
,
Surf. Sci.
462
,
L599
(
2000
).
42.
P.
Miranda
,
L.
Xu
,
Y.
Shen
, and
M.
Salmeron
,
Phys. Rev. Lett.
81
,
5876
(
1998
).
43.
T.
Arif
,
G.
Colas
, and
T.
Filleter
,
ACS Appl. Mater. Interfaces
10
,
22537
(
2018
).
44.
H.
Lee
,
J. H.
Ko
,
J. S.
Choi
,
J. H.
Hwang
,
Y. H.
Kim
,
M.
Salmeron
, and
J. Y.
Park
,
J. Phys. Chem. Lett.
8
,
3482
(
2017
).
45.
C.
Lee
,
Q.
Li
,
W.
Kalb
,
X. Z.
Liu
,
H.
Berger
,
R. W.
Carpick
, and
J.
Hone
,
Science
328
,
76
(
2010
).
46.
D.
Parobek
and
H.
Liu
,
2D Mater.
2
,
032001
(
2015
).
47.
H.
Lee
,
J. H.
Ko
,
H. C.
Song
,
M.
Salmeron
,
Y. H.
Kim
, and
J. Y.
Park
,
Tribol. Lett.
66
,
36
(
2018
).
48.
A.
Schumacher
 et al.,
J. Vac. Sci. Technol. B
14
,
1264
(
1996
).
49.
A.
Kozbial
,
X.
Gong
,
H.
Liu
, and
L.
Li
,
Langmuir
31
,
8429
(
2015
).
50.
D.
Lee
,
H.
Lee
,
H.
Lee
, and
J.
Park
,
J. Phys. Chem. C
124
,
16902
(
2020
).
51.
H.
Lee
,
H. B. R.
Lee
,
S.
Kwon
,
M.
Salmeron
, and
J. Y.
Park
,
ACS Nano
9
,
3814
(
2015
).
52.
R.
Frindt
,
J. Appl. Phys.
37
,
1928
(
1966
).
53.
Q.
Ji
 et al.,
Nano Lett.
13
,
3870
(
2013
).
54.
J. O.
Varghese
,
P.
Agbo
,
A. M.
Sutherland
,
V. W.
Brar
,
G. R.
Rossman
,
H. B.
Gray
, and
J. R.
Heath
,
Adv. Mater.
27
,
2734
(
2015
).
55.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
,
ACS Nano
4
,
2695
(
2010
).
56.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
,
Adv. Funct. Mater.
22
,
1385
(
2012
).
57.
H.
Lee
 et al.,
J. Phys. Chem. C
123
,
8827
(
2019
).
58.
S.
Tongay
 et al.,
Nano Lett.
14
,
3185
(
2014
).
59.
J. D.
Gale
and
A. L.
Rohl
,
Mol. Simul.
29
,
291
(
2003
).
60.
J. I. J.
Choi
,
J. J.
Kim
,
W.
Oh
,
W. H.
Doh
, and
J. Y.
Park
,
Rev. Sci. Instrum.
89
,
103701
(
2018
).
61.
J. E.
Kim
,
J. I. J.
Choi
,
J.
Kim
,
B. S.
Mun
,
K. J.
Kim
, and
J. Y.
Park
,
J. Phys. Chem. C
125
,
6909
(
2021
).
You do not currently have access to this content.