We investigated atomically resolved interface microstructures of vacuum-deposited Pt on SnO2(hkl) (hkl = 110, 101, 111; Pt/SnO2(hkl)) substrate surfaces. The Pt/SnO2(hkl) samples were prepared by electron-beam deposition of a 1.6-nm-thick Pt layer on SnO2(hkl) at room temperature under ultrahigh vacuum (∼10−8 Pa) followed by thermal annealing. Cross-sectional structural analysis was conducted by scanning transmission electron microscopy combined with x-ray energy dispersive spectroscopy and x-ray photoelectron spectroscopy. The Pt/SnO2(101) and Pt/SnO2(111) samples clearly showed Pt(111) epitaxial growth on the SnO2(101) and (111) substrate surfaces, whereas an islandlike Pt growth was observed on SnO2(110). Increasing the annealing temperature of the samples from 473 to 673 K resulted in alloying of the deposited Pt with Sn atoms from the substrate in the case of Pt/SnO2(110). In comparison, for Pt/SnO2(101) and Pt/SnO2(111), the interfaces were atomically steep, and no Pt–Sn alloys were generated even on 673 K annealing. The results clearly showed that the morphologies of the deposited Pt and the thermal diffusion behaviors of the Pt and substrate Sn atoms, i.e., the Pt/SnO2 interface microstructure, are determined by the lattice matching of the deposited Pt and SnO2 substrate interface.

2.
J.
Sheng
,
J.-H.
Lee
,
W.-H.
Choi
,
T.
Hong
,
M.
Kim
, and
J.-S.
Park
,
J. Vac. Sci. Technol. A
36
,
060801
(
2018
).
3.
H.
Huang
,
C. K.
Lim
,
M. S.
Tse
,
J.
Guo
, and
O. K.
Tan
,
Nanoscale
4
,
1491
(
2012
).
4.
Y.-C.
Her
,
B.-Y.
Yeh
, and
S.-L.
Huang
,
ACS Appl. Mater. Interfaces
6
,
9150
(
2014
).
5.
F. C.
Chung
,
R. J.
Wu
, and
F. C.
Cheng
,
Sens. Actuators B
190
,
1
(
2014
).
6.
K.
Cao
,
J.
Cai
,
X.
Liu
, and
R.
Chen
,
J. Vac. Sci. Technol. A
36
,
010801
(
2018
).
7.
N. A. K.
Aramouni
,
J. G.
Touma
,
B. A.
Tarboush
,
J.
Zeaiter
, and
M. N.
Ahmad
,
Renewable Sustainable Energy Rev.
82
,
2570
(
2018
).
8.
Y.
Takabatake
,
Z.
Noda
,
S. M.
Lyth
,
A.
Hayashi
, and
K.
Sasaki
,
Int. J. Hydrogen Energy
39
,
5074
(
2014
).
9.
C. J.
Pan
,
M. C.
Tsai
,
W. N.
Su
,
J.
Rick
,
N. G.
Akalework
,
A. K.
Agegnehu
,
S. Y.
Cheng
, and
B. J.
Hwang
,
J. Taiwan Inst. Chem. Eng.
74
,
154
(
2017
).
10.
C.
Byrne
,
B.
Brennan
,
R.
Lundy
,
J.
Bogan
,
A.
Brady
,
Y. Y.
Gomeniuk
,
S.
Monaghan
,
P. K.
Hurley
, and
G.
Hughes
,
Mater. Sci. Semicond. Process.
63
,
227
(
2017
).
11.
L.
Chen
,
D.
Ando
,
Y.
Sutou
, and
J.
Koike
,
J. Vac. Sci. Technol. B
37
,
031215
(
2019
).
12.
B. R.
Cuenya
,
Thin Solid Films
518
,
3127
(
2010
).
13.
N. M.
Marković
,
R. R.
Adžić
,
B. D.
Cahan
, and
E. B.
Yeager
,
J. Electroanal. Chem.
377
,
249
(
1994
).
14.
Z.
Zhang
,
J.
Liu
,
J.
Gu
,
L.
Su
, and
L.
Cheng
,
Energy Environ. Sci.
7
,
2535
(
2014
).
15.
N. R.
Elezovic
,
V. R.
Radmilovic
, and
N. V.
Krstajic
,
RSC Adv.
6
,
6788
(
2016
).
16.
F.
Takasaki
,
S.
Matsuie
,
Y.
Takabatake
,
Z.
Noda
,
A.
Hayashi
,
Y.
Shiratori
,
K.
Ito
, and
K.
Sasaki
,
J. Electrochem. Soc.
158
,
B1270
(
2011
).
17.
K.
Kakinuma
,
Y.
Chino
,
Y.
Senoo
,
M.
Uchida
,
T.
Kamino
,
H.
Uchida
,
S.
Deki
, and
M.
Watanabe
,
Electrochim. Acta
110
,
316
(
2013
).
18.
Y.
Senoo
,
K.
Kakinuma
,
M.
Uchida
,
H.
Uchida
,
S.
Deki
, and
M.
Watanabe
,
RSC Adv.
4
,
32180
(
2014
).
19.
Y.
Chino
,
K.
Taniguchi
,
Y.
Senoo
,
K.
Kakinuma
,
M.
Hara
,
M.
Watanabe
, and
M.
Uchida
,
J. Electrochem. Soc.
162
,
F736
(
2015
).
20.
G.
Ozouf
and
C.
Beauger
,
J. Mater. Sci.
51
,
5305
(
2016
).
21.
L.
Dubau
,
F.
Maillard
,
M.
Chatenet
,
S.
Cavaliere
,
I.
Jiménez-Morales
,
A.
Mosdale
, and
R.
Mosdale
,
Energies
13
,
403
(
2020
).
22.
I. O.
Chikunova
,
V. S.
Semeykina
,
A. N.
Kuznetsov
,
P. N.
Kalinkin
,
E. N.
Gribov
, and
E. V.
Parkhomchuk
,
Ionics
26
,
1861
(
2020
).
23.
24.
25.
Z.
Wang
,
M.
Saito
,
S.
Tsukimoto
, and
Y.
Ikuhara
,
J. Ceram. Soc. Japan
119
,
783
(
2011
).
26.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001348 for the process of SnO2(hkl) surface cleaning in UHV, LE-ISS spectra and LEED patterns of the cleaned SnO2(hkl) surfaces, and In-plane XRD results of Pt/SnO2(110), (101), and (111)@673K samples.
27.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
, in
Handbook of X-ray Photoelectron Spectroscopy
, edited by
J.
Chastain
(
Perkin-Elemer Co.
, Eden Prairie,
1992
).
28.
P.
Blumentrit
,
M.
Yoshitake
,
S.
Nemšák
,
T.
Kim
, and
T.
Nagata
,
Appl. Surf. Sci.
258
,
780
(
2011
).
29.
M.
Yoshitake
,
M.
Vaclavu
,
M.
Chundak
,
V.
Matolin
, and
T.
Chikyow
,
J. Solid State Electrochem.
17
,
3137
(
2013
).
30.
M.
Yoshitake
,
S.
Nemšák
,
T.
Skála
,
N.
Tsud
,
T.
Kim
,
V.
Matolín
, and
K. C.
Prince
,
Surf. Sci.
604
,
2150
(
2010
).
31.
M.
Yoshitake
,
S.
Nemšák
,
T.
Skála
,
N.
Tsud
,
V.
Matolín
, and
K. C.
Prince
,
Appl. Surf. Sci.
442
,
164
(
2018
).
32.
M.
Batzill
,
J.
Kim
,
D. E.
Beck
, and
B. E.
Koel
,
Phys. Rev. B
69
,
165403
(
2004
).
33.
S.
Sutton
and
R.
Balluffi
,
Interfaces in Crystalline Materials
(
Oxford Science Publications
,
Oxford
,
1995
).
34.
B. M.
Lairson
,
M. R.
Visokay
,
R.
Sinclair
,
S.
Hagstrom
, and
B. M.
Clemens
,
Appl. Phys. Lett.
61
,
1390
(
1992
).
35.
S.
Imada
,
T.
Kuraoka
,
E.
Tokumitsu
, and
H.
Ishiwara
,
Jpn. J. Appl. Phys.
40
,
666
(
2001
).
36.
J. H.
Lee
 et al,
Adv. Mater.
18
,
3125
(
2006
).
37.
K.
Inaba
,
S.
Kobayashi
,
K.
Uehara
,
A.
Okada
,
S. L.
Reddy
, and
T.
Endo
,
Adv. Phys. Chem.
3
,
72
(
2013
).
38.
S.
Tanuma
,
T.
Shiratori
,
T.
Kimura
,
K.
Goto
,
S.
Ichimura
, and
C. J.
Powell
,
Surf. Interface Anal.
37
,
833
(
2005
).
39.
W. D.
Michalak
,
J. M.
Krier
,
S.
Alayoglu
,
J. Y.
Shin
,
K.
An
,
K.
Komvopoulos
,
Z.
Liu
, and
G. A.
Somorjai
,
J. Catal.
312
,
17
(
2014
).
40.
K.
Kakinuma
 et al,
ACS Appl. Mater. Interfaces
11
,
34957
(
2019
).
41.
I. G.
Casella
and
M.
Contursi
,
J. Electroanal. Chem.
588
,
147
(
2006
).
42.
C.
Jackson
 et al,
Nat. Commun.
8
,
15802
(
2017
).
43.
S.
Morozumi
,
M.
Endo
,
M.
Kikuchi
, and
K.
Hamajima
,
J. Mater. Sci.
20
,
3976
(
1985
).

Supplementary Material

You do not currently have access to this content.