Vertical heterostructures of MoS2 and WSe2 layers are studied by spectroscopic photoemission electron microscopy as an effective technique for correlating chemical and electronic states at the micrometer scale. Element-specific, surface-sensitive images recorded at high lateral and energy resolution from core-level photoelectrons using different laboratory excitation sources are postprocessed to obtain laterally resolved maps of elemental composition and energy shifts in the Mo3d spectra of a few hundred meV. For monolayer MoS2, the method reveals substrate-dependent charge transfer properties within the narrow energy range of 360 meV, with MoS2 becoming more n-type after transfer onto WSe2. The band structure data from momentum microscopy taken over the same areas confirm the charge transfer from WSe2 to MoS2 by the shift of the K-bands away from the Fermi level and illustrates the layer-specific contributions to the electronic band structure of the heterostructure. From work function mapping, the reconstructed energy-level diagram reveals a type II heterostructure but with a very small conduction-band offset.

1.
M.
Amati
 et al,
J. Electron Spectrosc. Relat. Phenom.
224
,
59
(
2018
).
2.
L.
Gregoratti
,
T. O.
Mentes
,
A.
Locatelli
, and
M.
Kiskinova
,
J. Electron Spectrosc. Relat. Phenom.
170
,
13
(
2009
).
3.
S.
Ulstrup
 et al,
ACS Nano
10
,
10058
(
2016
).
4.
M. T.
Dau
 et al,
Appl. Phys. Lett.
110
,
011909
(
2017
).
5.
D.-J.
Yun
 et al,
2D Mater.
7
,
025002
(
2020
).
6.
C.
Mathieu
,
N.
Barett
,
J.
Rault
,
Y.-Y.
Mi
,
B.
Zhang
,
W. A.
de Heer
,
C.
Berger
,
E. H.
Conrad
, and
O.
Renault
,
Phys. Rev. B
83
,
235436
(
2011
).
7.
8.
M.
Frégnaux
,
H.
Kim
,
D.
Rouchon
,
V.
Derycke
,
J.
Bleuse
,
D.
Voiry
,
M.
Chhowalla
, and
O.
Renault
,
Surf. Interface Anal.
48
,
465
(
2015
).
9.
O.
Renault
,
M.
Lavayssière
,
A.
Bailly
,
D.
Mariolle
, and
N.
Barrett
,
J. Electron Spectrosc. Relat. Phenom.
171
,
68
(
2009
).
10.
D.
Dumcenco
 et al,
ACS Nano
9
,
4611
(
2015
).
11.
H.
Kim
,
D.
Ovchinnikov
,
D.
Deiana
,
D.
Unuchek
, and
A.
Kis
,
Nano Lett.
17
,
5056
(
2017
).
13.
S.
Bertolazzi
,
D.
Krasnozhon
, and
A.
Kis
,
ACS Nano
7
,
3246
(
2013
).
14.
M.
Escher
,
K.
Winkler
,
O.
Renault
, and
N.
Barrett
,
J. Electron Spectrosc. Relat. Phenom.
178
,
303
(
2010
).
15.
O.
Renault
,
Surf. Interface Anal.
42
,
816
(
2010
).
16.
In this mode, electrons impinge first onto the image intensifier and create a short light flash. A fast CDD camera images these light flashes and an analog image is created and transferred to the frame grabber card. Then, the computer analyses the images with the event-counting algorithm and converts them to digital images, where a single event is represented by exactly one gray-scale; a present number of images is accumulated during the dwell time of the detector. Finally, the accumulated event image is displayed in the imaging software.
17.
W. C.
Jin
 et al,
Phys. Rev. Lett.
111
,
106801
(
2013
).
18.
M.
Lavayssière
,
M.
Escher
,
O.
Renault
,
D.
Mariolle
, and
N.
Barrett
,
J. Electron Spectrosc. Relat. Phenom.
186
,
30
(
2013
).
19.
M. P.
Seah
,
Surf. Interface Anal.
33
,
950
(
2002
).
20.
O.
Renault
,
A.
Garnier
,
J.
Morin
,
N.
Gambacorti
, and
F.
Bertin
,
Appl. Surf. Sci.
258
,
10077
(
2012
).
21.
V.
Fernandez
,
O.
Renault
, and
N.
Fairley
, “
Optimising XPS Instrument Performance for Quantification of Spectra
” (submitted) (
2020
).
22.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
21
,
165
(
1994
).
23.
O.
Renault
,
R.
Brochier
,
A.
Roule
,
P.-H.
Haumesser
,
B.
Krömker
, and
D.
Funnemann
,
Surf. Interface Anal.
38
,
375
(
2006
).
24.
R.
Cheng
 et al,
Nano Lett.
14
,
5590
(
2014
).
25.
S.
Latini
,
K. T.
Winther
,
T.
Olsen
, and
K. S.
Thygesen
,
Nano Lett.
17
,
938
(
2017
).
26.
D.
Unuchek
,
A.
Ciarrocchi
,
A.
Avsar
,
K.
Watanabe
,
T.
Taniguchi
, and
A.
Kis
,
Nature
560
,
340
(
2018
).
27.
M.-H.
Chiu
 et al,
Nat. Commun.
6
,
7666
(
2015
).
28.
C.
Li
,
X.
Yan
,
X.
Song
,
W.
Bao
,
S.
Ding
,
D. W.
Zhang
, and
P.
Zhou
,
Nanotechnology
28
,
415201
(
2017
).
29.
H.
Terrones
,
F.
López-Urías
, and
M.
Terrones
,
Sci. Rep.
3
,
1549
(
2013
).
30.
M. M.
Ugeda
 et al,
Nat. Mater.
13
,
1091
(
2014
).
31.
J. H.
Park
 et al,
ACS Nano
13
,
7545
(
2019
).
32.
W.
Zhao
 et al,
Nano Res.
12
,
3095
(
2019
).
33.
J.
Kunstmann
 et al,
Nat. Phys.
14
,
801
(
2018
).
34.
P. S.
Schmidt
,
C. E.
Patrick
, and
K. S.
Thygesen
,
Phys. Rev. B
96
,
205206
(
2017
).
35.
F. A.
Rasmussen
and
K. S.
Thygesen
,
J. Phys. Chem. C
119
,
13169
(
2015
).
36.
Y. L.
Huang
 et al,
Nat. Commun.
6
,
6298
(
2015
).
37.
A. R.
Klots
 et al,
Sci. Rep.
4
,
66078
(
2014
).
38.
C.
Zhang
,
Y.
Chen
,
A.
Johnson
,
M. Y.
Li
,
L. J.
Li
,
P. C.
Mende
,
R. M.
Feenstra
, and
C. K.
Shih
,
Nano Lett.
15
,
6494
(
2015
).
39.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001135 for Kelvin-Force Microscopy measurements.

Supplementary Material

You do not currently have access to this content.