The uptake and thermal chemistry of cinnamaldehyde on Cu(110) single-crystal surfaces were characterized by temperature-programmed desorption and x-ray photoelectron spectroscopy (XPS). Adsorption at 85 K appears to be initiated by low-temperature decomposition to form styrene, which desorbs at 190 K, followed by the sequential buildup of a molecular monolayer and then a condensed molecular film. Molecular desorption from the monolayer occurs at 410 K, corresponding to a desorption energy of approximately 98 kJ/mol, and further decomposition to produce styrene (again) and other fragmentation products is seen at 550 K. The molecular nature and the quantitation of the low-temperature uptake were corroborated by the XPS data, which also provided hints about the adsorption geometry adopted by the unsaturated aldehyde on the surface. Density functional theory calculations, used to estimate adsorption energies as a function of coverage and coordination mode, pointed to possible η1-O binding, at least at high coverages, and to a stabilizing effect on the surface by the aromatic ring of cinnamaldehyde. Finally, coadsorption of oxygen on the surface was found to weaken the binding of cinnamaldehyde to the Cu substrate at high coverages without enhancing its uptake, but to not modify the decomposition mechanism or energetics in any significant way.

2.
L.
Zhang
,
M.
Zhou
,
A.
Wang
, and
T.
Zhang
,
Chem. Rev.
120
,
683
(
2020
).
3.
M.
Luneau
,
J. S.
Lim
,
D. A.
Patel
,
E. C. H.
Sykes
,
C. M.
Friend
, and
P.
Sautet
,
Chem. Rev.
120
,
12834
(
2020
).
4.
R. T.
Hannagan
,
G.
Giannakakis
,
M.
Flytzani-Stephanopoulos
, and
E. C. H.
Sykes
,
Chem. Rev.
120
,
12044
(
2020
).
5.
Y.
Cao
,
B.
Chen
,
J.
Guerrero-Sánchez
,
I.
Lee
,
X.
Zhou
,
N.
Takeuchi
, and
F.
Zaera
,
ACS Catal.
9
,
9150
(
2019
).
6.
Y.
Cao
,
J.
Guerrero-Sańchez
,
I.
Lee
,
X.
Zhou
,
N.
Takeuchi
, and
F.
Zaera
,
ACS Catal.
10
,
3431
(
2020
).
7.
X.
Lan
and
T.
Wang
,
ACS Catal.
10
,
2764
(
2020
).
8.
Y.
Dong
and
F.
Zaera
,
J. Phys. Chem. Lett.
9
,
1301
(
2018
).
9.
P.
Gallezot
and
D.
Richard
,
Catal. Rev. Sci. Technol.
40
,
81
(
1998
).
10.
Y.
Yuan
,
S.
Yao
,
M.
Wang
,
S.
Lou
, and
N.
Yan
,
Curr. Org. Chem.
17
,
400
(
2013
).
11.
L. J.
Durndell
,
K.
Wilson
, and
A. F.
Lee
,
RSC Adv.
5
,
80022
(
2015
).
12.
J. C.
de Jesús
and
F.
Zaera
,
J. Mol. Catal. A Chem.
138
,
237
(
1999
).
13.
J. C.
de Jesús
and
F.
Zaera
,
Surf. Sci.
430
,
99
(
1999
).
14.
M. T.
Nayakasinghe
,
J.
Guerrero-Sánchez
,
N.
Takeuchi
, and
F.
Zaera
,
J. Chem. Phys.
154
,
104701
(
2021
).
15.
F.
Delbecq
and
P.
Sautet
,
J. Catal.
211
,
398
(
2002
).
16.
D.
Loffreda
,
F.
Delbecq
,
F.
Vigne
, and
P.
Sautet
,
Angew. Chem., Int. Ed.
44
,
5279
(
2005
).
17.
D.
Loffreda
,
F.
Delbecq
,
F.
Vigne
, and
P.
Sautet
,
J. Am. Chem. Soc.
128
,
1316
(
2006
).
18.
J.
Haubrich
,
D.
Loffreda
,
F.
Delbecq
,
P.
Sautet
,
Y.
Jugnet
,
C.
Becker
, and
K.
Wandelt
,
J. Phys. Chem. C
114
,
1073
(
2010
).
19.
B.
Chen
and
F.
Zaera
,
J. Phys. Chem. C
125
,
14709
(
2021
).
20.
T.
Kim
and
F.
Zaera
,
J. Phys. Chem. C
116
,
8594
(
2012
).
21.
Y.
Yao
,
J.
Guerrero-Sánchez
,
N.
Takeuchi
, and
F.
Zaera
,
J. Phys. Chem. C
123
,
7584
(
2019
).
22.
Y.
Yao
and
F.
Zaera
,
Surf. Sci.
650
,
263
(
2016
).
23.
Y.
Yao
and
F.
Zaera
,
Surf. Sci.
646
,
37
(
2016
).
24.
A. G. J.
De Wit
,
R. P. N.
Bronckers
, and
J. M.
Fluit
,
Surf. Sci.
82
,
177
(
1979
).
25.
F. M.
Chua
,
Y.
Kuk
, and
P. J.
Silverman
,
Phys. Rev. Lett.
63
,
386
(
1989
).
26.
R.
Feidenhans’l
,
F.
Grey
,
R. L.
Johnson
,
S. G. J.
Mochrie
,
J.
Bohr
, and
M.
Nielsen
,
Phys. Rev. B
41
,
5420
(
1990
).
27.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
29.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
30.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
31.
S. E.
Stein
, “
NIST mass spec data center
,” in
NIST Chemistry WebBook: NIST Standard Reference Database Number 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
, 2018), accessed June 10, 2021.
33.
See http://webbook.nist.gov/chemistry/ for NIST Standard Reference Database (2003).
34.
Handbook of X-Ray Photoelectron Spectroscopy
, edited by
C. D.
Wagner
,
W. M.
Riggs
,
L. E.
Davis
,
J. F.
Moulder
, and
G. E.
Muilenberg
(
Perkin-Elmer Corporation
,
Eden Prairie, MN
,
1978
).
35.
F.
Bournel
,
C.
Laffon
,
P.
Parent
, and
G.
Tourillon
,
Surf. Sci.
350
,
60
(
1996
).
36.
F.
Zaera
, in
Comprehensive Inorganic Chemistry II
, edited by
J.
Reedijk
and
K.
Poeppelmeier
(
Elsevier
,
Oxford
,
2013
), pp.
39
74
.
37.
M. P.
Seah
and
W. A.
Dench
,
Surf. Interface Anal.
1
,
2
(
1979
).
38.
Practical Surface Analysis. Volume 1. Auger and X-ray Photoelectron Spectroscopy
, edited by
D.
Briggs
and
M. P.
Seah
(
John Wiley and Sons
,
Chichester
,
1990
).
39.
J. P.
Camplin
and
E. M.
McCash
,
Surf. Sci.
360
,
229
(
1996
).
40.
W.
Li
,
G.
Fan
,
L.
Yang
, and
F.
Li
,
Catal. Sci. Technol.
6
,
2337
(
2016
).
41.
F.
Xu
,
K.
Mudiyanselage
,
A. E.
Baber
,
M.
Soldemo
,
J.
Weissenrieder
,
M. G.
White
, and
D. J.
Stacchiola
,
J. Phys. Chem. C
118
,
15902
(
2014
).
42.
M. B.
Gawande
,
A.
Goswami
,
F.-X.
Felpin
,
T.
Asefa
,
X.
Huang
,
R.
Silva
,
X.
Zou
,
R.
Zboril
, and
R. S.
Varma
,
Chem. Rev.
116
,
3722
(
2016
).
43.
Y.-J.
Yang
,
B.-T.
Teng
,
Y.
Liu
, and
X.-D.
Wen
,
Appl. Surf. Sci.
357
,
369
(
2015
).
44.
H.
Hoffmann
,
F.
Zaera
,
R. M.
Ormerod
,
R. M.
Lambert
,
L. P.
Wang
, and
W. T.
Tysoe
,
Surf. Sci.
232
,
259
(
1990
).
45.
F. P.
Netzer
and
M. G.
Ramsey
,
Crit. Rev. Solid State Mater. Sci.
17
,
397
(
1992
).
46.
J.
Kubota
and
F.
Zaera
,
J. Am. Chem. Soc.
123
,
11115
(
2001
).
47.
G.
Canduela-Rodriguez
,
M. K.
Sabbe
,
M.-F.
Reyniers
,
J.-F.
Joly
, and
G. B.
Marin
,
Phys. Chem. Chem. Phys.
16
,
23754
(
2014
).
You do not currently have access to this content.