Atomic layer etching (ALE) is usually classified into ion-driven anisotropic etching or thermally driven isotropic etching. In this work, we present a thermal ALE process for Si3N4 with high selectivity to SiO2 and poly-Si. This ALE process consists of exposure to a CH2F2/O2/Ar downstream plasma to form an (NH4)2SiF6-based surface-modified layer, followed by infrared (IR) annealing to remove the modified layer. CH2F2-based chemistry was adopted to achieve high selectivity to SiO2 and poly-Si. This chemistry was expected to reduce the number density of F atoms (radicals), which contributes to decreasing the etching rate of SiO2 and poly-Si films. X-ray photoelectron spectroscopy analysis confirmed the formation of an (NH4)2SiF6-based modified layer on the surface of the Si3N4 after exposure to the plasma and subsequent removal of the modified layer using IR annealing. An in situ ellipsometry measurement revealed that the etch per cycle of the ALE process saturated with respect to the radical exposure time at 0.9 nm/cycle, demonstrating the self-limiting nature of this etching process. In addition, no etching was observed on SiO2 and poly-Si films, successfully demonstrating the high selectivity of this ALE process. This high selectivity to SiO2 and poly-Si is attributed to the fact that the spontaneous etching rates of these films are negligibly small and that there is no surface reaction to etch these films during the IR annealing step.

1.
D.
Benoit
 et al, in Technical Digest on IEEE Electron Devices Meeting, Washington, DC, 7–9 December 2015 (IEEE, New York, 2015), p. 201.
2.
J.
Micout
 et al, in Technical Digest on IEEE Electron Devices Meeting, San Francisco, CA, 2–6 December 2017 (IEEE, New York, 2017), p. 721.
3.
D.
Hisamoto
,
T.
Kaga
,
Y.
Kawamoto
, and
E.
Takeda
,
IEEE Electron. Device Lett.
11
,
36
(
1990
).
4.
K. J.
Kuhn
 et al, in Technical Digest on IEEE Electron Devices Meeting, San Francisco, CA, 10–13 December 2012 (IEEE, New York, 2012), p. 171.
5.
5
G.
Bae
 et al, in Technical Digest on IEEE Electron Devices Meeting, San Francisco, CA, 1–5 December 2018 (IEEE, New York, 2018), p. 656.
6.
W.
van Gelder
and
V. E.
Hauser
,
J. Electrochem. Soc.
114
,
869
(
1967
).
7.
H.
Namatsu
,
K.
Kurihara
,
M.
Nagase
,
K.
Iwadate
, and
K.
Murase
,
Appl. Phys. Lett.
66
,
2655
(
1995
).
8.
J. M.
Park
 et al, in Technical Digest on IEEE Electron Devices Meeting, Washington, DC, 7–9 December 2015 (IEEE, New York, 2015), p. 676.
9.
V. M.
Donnelly
and
A.
Kornblit
,
J. Vac. Sci. Technol. A
31
,
050825
(
2013
).
10.
S. M.
George
and
Y.
Lee
,
ACS Nano
10
,
4889
(
2016
).
11.
Y.
Lee
,
C.
Huffman
, and
S. M.
George
,
Chem. Mater.
28
,
7657
(
2016
).
12.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
13.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci.
4
,
N5041
(
2015
).
14.
C. T.
Carver
,
J. J.
Plombon
,
P. E.
Romero
,
S.
Suri
,
T. A.
Tronic
, and
R. B.
Turkot
, Jr
.,
ECS J. Solid State Sci.
4
,
N5005
(
2015
).
15.
V.
Jovanović
,
T.
Suligoj
,
M.
Poljak
,
Y.
Civale
, and
L. K.
Nanver
,
Solid State Electron.
54
,
870
(
2010
).
16.
K. J.
Kanarik
,
G.
Kamarthy
, and
R. A.
Gottscho
,
Solid State Technol.
55
,
15
(
2012
); available at https://www.solidstatetechnology.us/index.php/JSST/issue/view/30
17.
E.
Karakas
,
V. M.
Donnelly
, and
D. J.
Economou
,
J. Appl. Phys.
113
,
213301
(
2013
).
18.
T.
Matsuura
,
Y.
Honda
, and
J.
Murota
,
Appl. Phys. Lett.
74
,
3573
(
1999
).
19.
N.
Possémé
,
O.
Pollet
, and
S.
Barnola
,
Appl. Phys. Lett.
105
,
051605
(
2014
).
20.
N.
Possémé
,
V.
Ah-Leung
,
O.
Pollet
,
C.
Arvet
, and
M.
Garcia-Barros
,
J. Vac. Sci. Technol. A
34
,
061301
(
2016
).
21.
V.
Ah-Leung
,
O.
Pollet
,
N.
Possémé
,
M. G.
Barros
,
N.
Rochat
,
C.
Guedj
,
G.
Audoit
, and
S.
Barnola
,
J. Vac. Sci. Technol. A
35
,
021408
(
2017
).
22.
S. D.
Sherpa
and
A.
Ranjan
,
J. Vac. Sci. Technol. A
35
,
01A102
(
2017
).
23.
S. D.
Sherpa
,
P. L. G.
Ventzek
, and
A.
Ranjan
,
J. Vac. Sci. Technol. A
35
,
05C310
(
2017
).
24.
C.
Li
,
D.
Metzler
,
C. S.
Lai
,
E. A.
Hudson
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
34
,
041307
(
2016
).
25.
D.
Metzler
,
R. L.
Bruce
,
S.
Engelmann
,
E. A.
Joseph
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
32
,
020603
(
2014
).
26.
Y.
Lee
,
J. W.
DuMont
, and
S. M.
George
,
ECS J. Solid State Sci.
4
,
N5013
(
2015
).
27.
Y.
Lee
and
S. M.
George
,
ACS Nano
9
,
2061
(
2015
).
28.
N. R.
Johnson
and
S. M.
George
,
ACS Appl. Mater. Inter.
9
,
34435
(
2017
).
29.
J.
Zhao
,
M.
Konh
, and
A.
Teplyakov
,
Appl. Surf. Sci.
455
,
438
(
2018
).
30.
H.
Nishino
,
N.
Hayasaka
, and
H.
Okano
,
J. Appl. Phys.
74
,
1345
(
1993
).
31.
J.
Kikuchi
,
M.
Iga
,
H.
Ogawa
,
S.
Fujimura
, and
H.
Yano
,
Jpn. J. Appl. Phys.
33
,
2207
(
1994
).
32.
J.
Kikuchi
,
M.
Nagasaka
,
S.
Fujimura
, and
H. Y.
Horiike
,
Jpn. J. Appl. Phys.
35
,
1022
(
1995
).
33.
H.
Ogawa
,
T.
Arai
,
M.
Yanagisawa
,
T.
Ichiki
, and
Y.
Horiike
,
Jpn. J. Appl. Phys.
41
,
5349
(
2002
).
34.
T.
Hayashi
,
K.
Ishikawa
,
M.
Sekine
,
M.
Hori
,
A.
Kono
, and
K.
Suu
,
Jpn. J. Appl. Phys.
51
,
016201
(
2012
).
35.
Y.
Hagimoto
,
H.
Ugajin
,
D.
Miyakoshi
,
H.
Iwamoto
,
Y.
Muraki
, and
T.
Orii
,
Solid State Phenom.
134
,
7
(
2008
).
36.
W. R.
Knolle
and
R. D.
Huttemann
,
J. Electrochem. Soc.
135
,
2574
(
1988
).
37.
M.
Saito
,
H.
Eto
,
N.
Makino
,
K.
Omiya
,
T.
Homma
, and
T.
Nagatomo
,
Jpn. J. Appl. Phys.
40
,
5271
(
2001
).
38.
Y.
Kataoka
,
S.
Saito
, and
K.
Omiya
,
J. Electrochem. Soc.
146
,
3435
(
1999
).
39.
Y.
Wang
and
L.
Luo
,
J. Vac. Sci. Technol. A
16
,
1582
(
1998
).
40.
V.
Volynets
,
Y.
Barsukov
,
G.
Kim
,
J.
Jung
,
S. K.
Nam
,
K.
Han
,
S.
Huang
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
38
,
023007
(
2020
).
41.
J.
Jung
,
Y.
Barsukov
,
V.
Volynets
,
G.
Kim
,
S. K.
Nam
,
K.
Han
,
S.
Huang
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
38
,
023008
(
2020
).
42.
K.
Shinoda
,
M.
Izawa
,
T.
Kanekiyo
,
K.
Ishikawa
, and
M.
Hori
,
Appl. Phys. Express
9
,
106201
(
2016
).
43.
K.
Shinoda
 et al,
J. Phys. D: Appl. Phys.
50
,
194001
(
2017
).
44.
N.
Miyoshi
,
H.
Kobayashi
,
K.
Shinoda
,
M.
Kurihara
,
T.
Watanabe
,
Y.
Kouzuma
,
K.
Yokogawa
,
S.
Sakai
, and
M.
Izawa
,
Jpn. J. Appl. Phys.
56
,
06HB01
(
2017
).
45.
K.
Shinoda
,
N.
Miyoshi
,
H.
Kobayashi
,
M.
Izawa
,
T.
Saeki
,
K.
Ishikawa
, and
M.
Hori
,
J. Vac. Sci. Technol. A
37
,
051002
(
2019
).
46.
V.
Renaud
,
C.
Petit-Etienne
,
J.
Barnes
,
J.
Bisserier
,
O.
Joubert
, and
E.
Paragon
,
J. Appl. Phys.
126
,
243301
(
2019
).
47.
B. E.
Deal
and
A. S.
Grove
,
J. Appl. Phys.
36
,
3770
(
1965
).
48.
L. P. H.
Jeurgens
,
W. G.
Sloof
,
F. D.
Tichelaar
, and
E. J.
Mittemeijer
,
J. Appl. Phys.
92
,
1649
(
2002
).
49.
N.
Cabrera
and
N. F.
Mott
,
Rep. Prog. Phys.
12
,
163
(
1949
).
50.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley-Interscience
,
New York
,
2005
).
You do not currently have access to this content.