High temperature-resistant fabrics can be used as a reinforcement structure in ceramic matrix composites. They often need a coating for oxidation protection and mechanical decoupling from the matrix. Atomic layer deposition (ALD) provides very thin conformal coatings even deep down into complex or porous structures and thus might be a suitable technique for this purpose. Carbon fiber fabrics (size 300 mm × 80 mm) and SiC fiber fabrics (size 400 mm × 80 mm) were coated using ALD with a multilayer system: a first layer made of 320 cycles of alumina (Al2O3) deposition, a second layer made of 142 cycles of titania-furfuryl alcohol hybrid (TiO2-FFA), and a third layer made of 360 cycles of titanium phosphate (TixPOy). Scanning electron microscopy reveals that the coatings are uniform and that the thickness of each layer is almost independent of the place in the reactor while coating. Appearance and thickness do not show any dependence on the type of fiber used as a substrate. Energy dispersive x-ray spectroscopy confirmed the expected elemental composition of each layer. Thermogravimetric analysis under oxidizing environment revealed that the first layer increases the onset temperature of fiber oxidation significantly, while the following two layers improve the oxidative protection only to a much smaller degree. Varying the geometry and size of the sample holder and especially the stacking of several fabric specimens on top of each other allowed increasing the total area of coated fabric up to 560 cm2 per batch. It was demonstrated that four-layered fiber coatings could be obtained with high uniformity even on these much more complicated geometries.

1.
D. C.
Phillips
,
J. Mater. Sci.
7
,
1175
(
1972
).
2.
E. H.
Andrews
,
J. Mech. Phys. Solids
11
,
231
(
1963
).
3.
R.
Naslain
,
O.
Dugne
,
A.
Guette
,
J.
Sevely
,
C. R.
Brosse
,
J.-P.
Rocher
, and
J.
Cotteret
,
J. Am. Ceram. Soc.
74
,
2482
(
1991
).
4.
Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications
, edited by
W.
Krenkel
(
Wiley-VCH
,
Weinheim
,
2008
), pp.
V
VII
.
5.
M.
Trinquecoste
,
J. L.
Carlier
,
A.
Derré
,
P.
Delhaès
, and
P.
Chadeyron
,
Carbon
34
,
923
(
1996
).
6.
T. L.
Apukhtina
,
G. I.
Shcherbakova
,
D. V.
Sidorov
,
M. S.
Varfolomeev
,
D. G.
Sidorov
, and
A. I.
Drachev
,
Inorg. Mater.
51
,
806
(
2015
).
7.
W. A.
Zdaniewski
and
H. P.
Kirchner
,
J. Am. Ceram. Soc.
70
,
548
(
1987
).
8.
S.
Cao
,
J.
Wang
, and
H.
Wang
,
Appl. Surf. Sci.
367
,
190
(
2016
).
9.
L.
Filipuzzi
,
G.
Camus
,
R.
Naslain
, and
J.
Thebault
,
J. Am. Ceram. Soc.
77
,
459
(
1994
).
10.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
11.
S.-M.
Lee
,
E.
Pippel
,
U.
Gösele
,
C.
Dresbach
,
Y.
Qin
,
C. V.
Chandran
,
T.
Bräuniger
,
G.
Hause
, and
M.
Knez
,
Science
324
,
488
(
2009
).
12.
K. E.
Gregorczyk
,
D. F.
Pickup
,
M. G.
Sanz
,
I. A.
Irakulis
,
C.
Rogero
, and
M.
Knez
,
Chem. Mater.
27
,
181
(
2015
).
13.
M.
Kemell
,
V.
Pore
,
M.
Ritala
,
M.
Leskelä
, and
M.
Lindén
,
J. Am. Chem. Soc.
127
,
14178
(
2005
).
14.
A.
Niskanen
,
K.
Arstila
,
M.
Ritala
, and
M.
Leskelä
,
J. Electrochem. Soc.
152
,
F90
(
2005
).
15.
Q.
Peng
,
X.-Y.
Sun
,
J. C.
Spagnola
,
G. K.
Hyde
,
R. J.
Spontak
, and
G. N.
Parsons
,
Nano Lett.
7
,
719
(
2007
).
16.
J. S.
Jur
,
W. J.
Sweet
,
C. J.
Oldham
, and
G. N.
Parsons
,
Adv. Funct. Mater.
21
,
1993
(
2011
).
17.
K.
Lee
,
J. S.
Jur
,
D. H.
Kim
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
30
,
01A163
(
2012
).
18.
M. B. M.
Mousa
,
J. S.
Ovental
,
A. H.
Brozena
,
C. J.
Oldham
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
36
,
031517
(
2018
).
19.
S.
Zhao
,
L.
Yan
,
X.
Tian
,
Y.
Liu
,
C.
Chen
,
Y.
Li
,
J.
Zhang
,
Y.
Song
, and
Y.
Qin
,
Nano Res.
11
,
530
(
2018
).
20.
S. W.
Smith
,
C.
Buesch
,
D. J.
Matthews
,
J.
Simonsen
, and
J. F.
Conley
,
J. Vac. Sci. Technol. A
32
,
041508
(
2014
).
21.
A. K.
Roy
 et al,
Anal. Bioanal. Chem.
396
,
1913
(
2010
).
22.
A. K.
Roy
,
S.
Knohl
, and
W. A.
Goedel
,
J. Mater. Sci.
46
,
4812
(
2011
).
23.
S. E.
Atanasov
 et al,
J. Mater. Chem. A
2
,
17371
(
2014
).
24.
C. A.
Hanson
,
C. J.
Oldham
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
30
,
01A117
(
2012
).
25.
M.
Ritala
,
M.
Kemell
,
M.
Lautala
,
A.
Niskanen
,
M.
Leskelä
, and
S.
Lindfors
,
Chem. Vap. Depos.
12
,
655
(
2006
).
26.
M.
Kemell
,
M.
Ritala
,
M.
Leskelä
,
R.
Groenen
, and
S.
Lindfors
,
Chem. Vap. Depos.
14
,
347
(
2008
).
27.
J.
Zhao
 et al,
Adv. Mater. Interfaces
1
,
1400040
(
2014
).
28.
J. C.
Spagnola
,
B.
Gong
,
S. A.
Arvidson
,
J. S.
Jur
,
S. A.
Khan
, and
G. N.
Parsons
,
J. Mater. Chem.
20
,
4213
(
2010
).
29.
G. K.
Hyde
 et al,
Langmuir
26
,
2550
(
2010
).
30.
W. J.
Sweet
,
C. J.
Oldham
, and
G. N.
Parsons
,
ACS Appl. Mater. Interfaces
6
,
9280
(
2014
).
31.
J.
Musschoot
,
J.
Dendooven
,
D.
Deduytsche
,
J.
Haemers
,
G.
Buyle
, and
C.
Detavernier
,
Surf. Coat. Tech.
206
,
4511
(
2012
).
32.
B.
Kalanyan
,
C. J.
Oldham
,
W. J.
Sweet
, and
G. N.
Parsons
,
ACS Appl. Mater. Interfaces
5
,
5253
(
2013
).
33.
J. Z.
Mundy
,
A.
Shafiefarhood
,
F.
Li
,
S. A.
Khan
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
34
,
01A152
(
2016
).
34.
J.
Lee
 et al,
NPG Asia Mater.
8
,
e331
(
2016
).
35.
C. D.
McClure
,
C. J.
Oldham
,
H. J.
Walls
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
31
,
061506
(
2013
).
36.
W. J.
Sweet
,
C. J.
Oldham
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
33
,
01A117
(
2015
).
37.
F.
Kayaci
,
C.
Ozgit-Akgun
,
I.
Donmez
,
N.
Biyikli
, and
T.
Uyar
,
ACS Appl. Mater. Interfaces
4
,
6185
(
2012
).
38.
F.
Kayaci
,
C.
Ozgit-Akgun
,
N.
Biyikli
, and
T.
Uyar
,
RSC Adv.
3
,
6817
(
2013
).
39.
G. K.
Hyde
,
K. J.
Park
,
S. M.
Stewart
,
J. P.
Hinestroza
, and
G. N.
Parsons
,
Langmuir
23
,
9844
(
2007
).
40.
K. M.
Roth
,
K. G.
Roberts
, and
G. K.
Hyde
,
Text. Res. J.
80
,
1970
(
2010
).
41.
X.
Xiao
,
G.
Cao
,
F.
Chen
,
Y.
Tang
,
X.
Liu
, and
W.
Xu
,
Appl. Surf. Sci.
349
,
876
(
2015
).
42.
C.
Militzer
,
P.
Dill
, and
W. A.
Goedel
,
J. Am. Ceram. Soc. A
100
,
5409
(
2017
).
43.
H.
Yang
,
Y.
Wang
,
K.
Liu
,
X.
Liu
,
F.
Chen
, and
W.
Xu
,
Text. Res. J.
89
,
3529
(
2019
).
44.
R. U.
Puvvada
,
J. P.
Wooding
,
M. C.
Bellavia
,
E. K.
McGuinness
,
T. A.
Sulchek
, and
M. D.
Losego
,
JOM
71
,
178
(
2019
).
45.
M.
Shimel
,
I.
Gouzman
,
E.
Grossman
,
Z.
Barkay
,
S.
Katz
,
A.
Bolker
,
N.
Eliaz
, and
R.
Verker
,
Adv. Mater. Interfaces
5
,
1800295
(
2018
).
46.
K.
Zhao
,
W.
Niu
, and
S.
Zhang
,
J. Mater. Sci.
55
,
2439
(
2020
).
47.
C. J.
Oldham
,
B.
Gong
,
J. C.
Spagnola
,
J. S.
Jur
,
K. J.
Senecal
,
T. A.
Godfrey
, and
G. N.
Parsons
,
J. Electrochem. Soc.
158
,
D549
(
2011
).
48.
A. K.
Roy
,
S.
Schulze
,
M.
Hietschold
, and
W. A.
Goedel
,
Carbon
50
,
761
(
2012
).
49.
W. J.
Sweet
,
J. S.
Jur
, and
G. N.
Parsons
,
J. Appl. Phys.
113
,
194303
(
2013
).
50.
G. N.
Parsons
 et al,
Coord. Chem. Rev.
257
,
3323
(
2013
).
51.
A. H.
Brozena
,
C. J.
Oldham
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
34
,
010801
(
2015
).
52.
K.
Gregorczyk
and
M.
Knez
,
Prog. Mater. Sci.
75
,
1
(
2016
).
53.
S.
Knohl
 et al,
ACS Appl. Mater. Interfaces
5
,
6161
(
2013
).
54.
R. E.
Rodríguez
,
T. H.
Cho
,
M.
Ravandi
,
W. S.
LePage
,
M.
Banu
,
M. D.
Thouless
, and
N. P.
Dasgupta
,
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, San Diego, Feb. 2020
(
Springer International Publishing
,
Cham
,
2020
), pp.
1513
1527
.
55.
F.
Böttger-Hiller
 et al,
Mater. Werkst.
45
,
546
(
2014
).
56.
C.
Militzer
,
S.
Knohl
,
V.
Dzhagan
,
D. R. T.
Zahn
, and
W. A.
Goedel
,
J. Vac. Sci. Technol. A
35
,
01B107
(
2017
).
57.
M. D.
Groner
,
F. H.
Fabreguette
,
J. W.
Elam
, and
S. M.
George
,
Chem. Mater.
16
,
639
(
2004
).
58.
C.
Militzer
,
J.
Buchsbaum
,
V.
Dzhagan
,
D. R. T.
Zahn
,
H.
Wulff
,
C. A.
Helm
, and
W. A.
Goedel
,
Adv. Mater. Interfaces
5
,
1800423
(
2018
).
59.
A. K.
Roy
, “Atomic Layer Deposition onto Fibers,” Ph.D. Dissertation (Technische Universität Chemnitz, Chemnitz, 2011), see http://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa-85451.
60.
J.-M.
Vallerot
and
X.
Bourrat
,
Carbon
44
,
1565
(
2006
).
61.
D. L.
Greenaway
,
G.
Harbeke
,
F.
Bassani
, and
E.
Tosatti
,
Phys. Rev.
178
,
1340
(
1969
).
62.
A. K.
Roy
,
W.
Baumann
,
S.
Schulze
,
M.
Hietschold
,
T.
Mäder
,
D. J.
Nestler
,
B.
Wielage
, and
W. A.
Goedel
,
J. Am. Ceram. Soc.
94
,
2014
(
2011
).
63.
R. L.
Puurunen
,
Chem. Vap. Depos.
9
,
327
(
2003
).
64.
S.
Knohl
,
A.
Kumar Roy
,
W. A.
Goedel
,
S.
Schulze
, and
M.
Hietschold
,
J. Vac. Sci. Technol. A
31
,
01A139
(
2013
).
65.
G.
Ervin
,
J. Am. Ceram. Soc.
41
,
347
(
1958
).
66.
J.
Roy
,
S.
Chandra
,
S.
Das
, and
S.
Maitra
,
Rev. Adv. Mater. Sci.
38
,
29
(
2014
).
67.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001193 for sketch and photo of used sample holder, for Integral EDX spectra of C-3 and SiC-3 after coating and after oxidation, and for optical microscopy images of fiber bundles extracted out of fabric after coating.

Supplementary Material

You do not currently have access to this content.