MoO3 films were grown on stepped c-plane sapphire substrates by molecular beam epitaxy using MoO3 vapor from a conventional Knudsen cell. Stepped sapphire (0001) substrates were prepared by ex situ annealing at 1100–1300 °C in dry air. Step bunching typically resulted in multistepped surfaces with wide atomically smooth terraces. Ex situ annealing at 1100 °C followed by in vacuo annealing at 700 °C provided clean substrates for growth. Ultrathin films were grown at 450 °C via a self-limiting process that represents a balance between the incident MoO3 flux and the desorption flux. Elongated bilayer islands (0.7-nm thick) were formed on sapphire (0001) terraces. Monocrystalline α-MoO3 (010) thin films [(010)α-MoO3∥(0001)sapphire] were grown at 450 °C using a higher incident MoO3 flux and characterized by atomic force microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and cross-sectional transmission electron microscopy. The step-terrace surface morphology of the monocrystalline films strongly suggests multilayer growth.

1.
P.
Novotný
,
S.
Yusuf
,
F.
Li
, and
H. H.
Lamb
,
J. Chem. Phys.
152
,
044713
(
2020
).
2.
E.
Heracleous
,
F.
Lee
,
I.
Vasalos
, and
A. A.
Lemonidou
,
Catal. Lett.
88
,
47
(
2003
).
3.
A.
Christodoulakis
,
E.
Heracleous
,
A.
Lemonidou
, and
S.
Boghosian
,
J. Catal.
242
,
16
(
2006
).
4.
K.
Chen
,
S.
Xie
,
A. T.
Bell
, and
E.
Iglesia
,
J. Catal.
198
,
232
(
2001
).
5.
E.
Comini
,
L.
Yubao
,
Y.
Brando
, and
G.
Sberveglieri
,
Chem. Phys. Lett.
407
,
368
(
2005
).
6.
L.
Zhou
,
L.
Yang
,
P.
Yuan
,
J.
Zou
,
Y.
Wu
, and
C.
Yu
,
J. Phys. Chem. C
114
,
21868
(
2010
).
7.
C.
Battaglia
 et al.,
Nano Lett.
14
,
967
(
2014
).
8.
W.
Zeng
,
K. S.
Yong
,
Z. M.
Kam
,
Z.
Chen
, and
Y.
Li
,
Synth. Met.
161
,
2748
(
2012
).
9.
J. J.
Jasieniak
,
J.
Seifter
,
J.
Jo
,
T.
Mates
, and
A. J.
Heeger
,
Adv. Funct. Mater.
22
,
2594
(
2012
).
10.
K.
Koike
,
R.
Wada
,
S.
Yagi
,
Y.
Harada
,
S.
Sasa
, and
M.
Yano
,
Jpn. J. Appl. Phys.
53
,
058007
(
2014
).
11.
X. W.
Lou
and
H. C.
Zeng
,
Chem. Mater.
14
,
4781
(
2002
).
12.
G.
Wei
,
W.
Qin
,
D.
Zhang
,
G.
Wang
,
R.
Kim
,
K.
Zheng
, and
L.
Wang
,
J. Alloys Compd.
481
,
417
(
2009
).
13.
D.
Di Yao
,
J. Z.
Ou
,
K.
Latham
,
S.
Zhuiykov
,
A. P.
O’Mullane
, and
K.
Kalantarzadeh
,
Cryst. Growth Des.
12
,
1865
(
2012
).
14.
P. F.
Carcia
and
E. M.
McCarron
,
Thin Solid Films
155
,
53
(
1987
).
15.
Q. P.
Ding
,
H. B.
Huang
,
J. H.
Duan
,
J. F.
Gong
,
S. G.
Yang
,
X. N.
Zhao
, and
Y. W.
Du
,
J. Cryst. Growth
294
,
304
(
2006
).
16.
X. W.
Lou
and
H. C.
Zeng
,
J. Am. Chem. Soc.
125
,
2697
(
2003
).
17.
A.
Hanif
,
T.
Xiao
,
A. P. E.
York
,
J.
Sloan
, and
M. L. H.
Green
,
Chem. Mater.
14
,
1009
(
2002
).
18.
H.-S.
Kim
,
J. B.
Cook
,
H.
Lin
,
J. S.
Ko
,
S. H.
Tolbert
,
V.
Ozolins
, and
B.
Dunn
,
Nat. Mater.
16
,
454
(
2017
).
19.
A. J.
Molina-Mendoza
 et al.,
Chem. Mater.
28
,
4042
(
2016
).
20.
J. H.
Kim
,
J. K.
Dash
,
J.
Kwon
,
C.
Hyun
,
H.
Kim
,
E.
Ji
, and
G.-H.
Lee
,
2D Mater.
6
,
015016
(
2019
).
21.
22.
L.
Kihlborg
,
Ark. Kemi
21
,
357
(
1963
).
23.
S. I.
Bakholdin
and
V. N.
Maslov
,
Phys. Solid State
57
,
1236
(
2015
).
24.
J. R.
Heffelfinger
and
C. B.
Carter
,
Surf. Sci.
389
,
188
(
1997
).
25.
M.
Yoshimoto
,
T.
Maeda
,
T.
Ohnishi
,
H.
Koinuma
,
O.
Ishiyama
,
M.
Shinohara
,
M.
Kubo
,
R.
Miura
, and
A.
Miyamoto
,
Appl. Phys. Lett.
67
,
2615
(
1995
).
27.
T.
Isono
,
T.
Ikeda
,
R.
Aoki
,
K.
Yamazaki
, and
T.
Ogino
,
Surf. Sci.
604
,
2055
(
2010
).
28.
G.-H.
Lee
,
Mater. Sci. Eng. B
138
,
41
(
2007
).
29.
S. C.
Wang
and
G.
Ehrlich
,
Phys. Rev. Lett.
70
,
41
(
1993
).
30.
K. M.
Adkison
,
S.-L.
Shang
,
B. J.
Bocklund
,
D.
Klimm
,
D. C.
Schlom
, and
Z.-K.
Liu
,
APL Mater.
8
,
081110
(
2020
).
31.
P.
Novotný
and
H. H.
Lamb
,
J. Vac. Sci. Technol. A
37
,
051504
(
2019
).
32.
D.
Wang
,
J.-N.
Li
,
Y.
Zhou
,
D.-H.
Xu
,
X.
Xiong
,
R.-W.
Peng
, and
M.
Wang
,
Appl. Phys. Lett.
108
,
053107
(
2016
).
33.
C. D.
Wagner
,
NIST X-Ray Photoelectron Spectroscopy (XPS) Database
(
National Instutute of Standards and Technology
,
Oakland
,
1991
).
34.
D.
Yang
,
M.
Krasowska
,
R.
Sedev
, and
J.
Ralston
,
Phys. Chem. Chem. Phys.
12
,
13724
(
2010
).
35.
J.
Stoch
and
J.
Gablankowska-Kukucz
,
Surf. Interface Anal.
17
,
165
(
1991
).
36.
P. A.
Spevack
and
N. S.
McIntyre
,
J. Phys. Chem.
97
,
11020
(
1993
).
37.
T. A.
Patterson
,
J. C.
Carver
,
D. E.
Leyden
, and
D. M.
Hercules
,
J. Phys. Chem.
80
,
1700
(
1976
).
38.
J.-G.
Choi
and
L. T.
Thompson
,
Appl. Surf. Sci.
93
,
143
(
1996
).
39.
P. J.
Cumpson
,
Surf. Interface Anal.
29
,
403
(
2000
).
40.
H.
Brune
, in
Surface and Interface Science: Solid-Solid Interfaces and Thin Films
, edited by
K.
Wandelt
(
Wiley VCH
,
Weinheim
,
2014
), p.
421
.
41.
G.
Ehrlich
and
F. G.
Hudda
,
J. Chem. Phys.
44
,
1039
(
1966
).
42.
R. L.
Schwoebel
and
E. J.
Shipsey
,
J. Appl. Phys.
37
,
3682
(
1966
).
43.
JCPDS Card No. PDF# 00-05-0508 (
2019
).
44.
See the supplementary material at http://www.scitation.org/doi/suppl/10.1116/6.0000962 for RHEED patterns of a clean stepped sapphire substrate and a film after 5 min growth.

Supplementary Material

You do not currently have access to this content.