Capacitively coupled wafer-bearing cathodes are widely used in etching and deposition processes. Uniform electric field and plasma density across the wafer surface are necessary for process control all the way to the edge of the wafer. Terminating structures at the wafer edge such as focus rings are used to improve uniformity and minimize costly edge exclusion. The focus ring can be viewed as an arbitrary impedance element at the wafer edge that balances the sheath voltage above it and the region above the wafer, minimizing field variation at the wafer edge. To validate this assumption, a one-dimension circuit model with focus rings was developed. The simulations were compared to experimental results measured using hairpin probe, VI probe, and a retarding field energy analyzer (Impedans RFEA). It was found that the focus ring coupling acts as a voltage divider only in high voltage cases, and the sheath voltage drop over the focus ring will increase in low voltage cases and does not rigorously follow the voltage divider model typically used.

1.
K.
Zhao
,
Y.-X.
Liu
,
E.
Kawamura
,
D.-Q.
Wen
,
M.
Lieberman
, and
Y.-N.
Wang
,
Plasma Sources Sci. Technol.
27
,
055017
(
2018
).
2.
M.
Kubota
and
T.
Shima
, U.S. patent 10,170,283 (January 1, 2019).
3.
J. S.
Kim
,
M. Y.
Hur
,
H. J.
Kim
, and
H. J.
Lee
,
J. Appl. Phys.
126
,
233301
(
2019
).
4.
N. Y.
Babaeva
and
M. J.
Kushner
,
J. Appl. Phys.
101
,
113307
(
2007
).
5.
N. Y.
Babaeva
and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
41
,
062004
(
2008
).
6.
L.
Tong
,
Jpn. J. Appl. Phys.
54
,
06GA01
(
2015
).
7.
K. C.
Yang
,
S. W.
Park
,
H. S.
Lee
,
D. W.
Kim
, and
G. Y.
Yeom
,
Nanosci. Nanotechnol. Lett.
9
,
24
(
2017
).
8.
Y.
Zhang
,
A.
Zafar
,
D. J.
Coumou
,
S. C.
Shannon
, and
M. J.
Kushner
,
J. Appl. Phys.
117
,
233302
(
2015
).
9.
P.
Boyle
,
A.
Ellingboe
, and
M.
Turner
,
J. Phys. D: Appl. Phys.
37
,
697
(
2004
).
10.
P.
Boyle
,
A.
Ellingboe
, and
M.
Turner
,
Plasma Sources Sci. Technol.
13
,
493
(
2004
).
11.
D.
Peterson
, et al., “Model-experiment comparison of radiofrequency phase resolved plasma parameters for moderate pres-sure capacitively coupled discharges,” in APS Annual Gaseous Electronics Meeting Abstracts (2019), pp. RR3–003.
12.
D. J.
Peterson
et al., “Characterization of intermediate pressure plasmas with advanced microwave resonator diagnostics” Ph.D. (North Carolina State University, 2020).
13.
A.
Hammoud
,
E.
Baumann
,
E.
Overton
,
I.
Myers
,
J.
Suthar
,
W.
Khachen
, and
J.
Laghari
, “High temperature dielectric properties of apical, kapton, peek, teflon af, and upilex polymers, ” in [Proceedings] 1992 Annual Report: Conference on Electrical Insulation and Dielectric Phenomena (IEEE, New York, 1992), pp. 549–554.
14.
D.
Gahan
,
B.
Dolinaj
, and
M.
Hopkins
,
Rev. Sci. Instrum.
79
,
033502
(
2008
).
15.
D. J.
Coumou
,
D. H.
Clark
,
T.
Kummerer
,
M.
Hopkins
,
D.
Sullivan
, and
S.
Shannon
,
IEEE Trans. Plasma Sci.
42
,
1880
(
2014
).
16.
M.
Olevanov
,
O.
Proshina
,
T.
Rakhimova
, and
D.
Voloshin
,
Phys. Rev. E
78
,
026404
(
2008
).
17.
E.
Kawamura
,
V.
Vahedi
,
M.
Lieberman
, and
C.
Birdsall
,
Plasma Sources Sci. Technol.
8
,
R45
(
1999
).
18.
D.
Gahan
,
S.
Daniels
,
C.
Hayden
,
P.
Scullin
,
D.
O’Sullivan
,
Y.
Pei
, and
M.
Hopkins
,
Plasma Sources Sci. Technol.
21
,
024004
(
2012
).
19.
T.
Panagopoulos
and
D. J.
Economou
,
J. Appl. Phys.
85
,
3435
(
1999
).
20.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-frequency Plasmas
(Cambridge University Press, Cambridge
,
New York
,
2011
).
21.
K.
Ellmer
,
R.
Wendt
, and
K.
Wiesemann
,
Int. J. Mass Spectrom.
223
,
679
(
2003
).
22.
M.
Talley
,
S.
Shannon
,
L.
Chen
, and
J.
Verboncoeur
,
Plasma Sources Sci. Technol.
26
,
125001
(
2017
).
23.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
New York
,
2005
).
24.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
26.
27.
You do not currently have access to this content.