This study investigates amorphous SiCN thin films deposited by remote plasma atomic layer deposition. Bis[(diethylamino)dimethylsilyl](trimethylsilyl)amine (DTDN-2) and N2 plasma were used as the precursor and reactant, respectively. The deposition temperature ranged from 100 to 300 °C, and the plasma power was set to 100 and 300 W. It was determined that the SiCN film carbon content increased with decreasing plasma power and deposition temperature. Likewise, decreasing the plasma power and deposition temperature lowered the dielectric constant of the film owing to the low film density and high carbon content. It was found that the composition of the SiCN film deposited at 300 °C was similar to that of the SiN film. The wet etch rate of the film deposited at 200 °C had the lowest value owing to the carbon content and high film density. The chemical bonding states of Si, C, and N were measured by x-ray photoelectron spectroscopy.

1.
K.
Maex
,
M. R.
Baklanov
,
D.
Shamiryan
,
F.
Lacopi
,
S. H.
Brongersma
, and
Z. S.
Yanovitskaya
,
J. Appl. Phys.
93
,
8793
(
2003
).
2.
D.
Shamiryan
,
T.
Abell
,
F.
Lacopi
, and
K.
Maex
,
Mater. Today
7
,
34
(
2004
).
3.
A.
Grill
,
J. Vac. Sci. Technol. B
34
,
020801
(
2016
).
4.
S.
Song
,
S.
Park
,
C.
Jung
,
H.
Park
,
Y.
Kim
, and
H.
Jeon
,
J. Vac. Sci. Technol. A
38
,
062301
(
2020
).
5.
H.
Treichel
,
J. Electron. Mater.
30
,
290
(
2001
).
6.
A. P.
Jacob
,
R.
Xie
,
M. G.
Sung
,
L.
Liebmann
,
R. T. P.
Lee
, and
B.
Taylor
,
Int. J. High Speed Electron. Syst.
26
,
1740001
(
2017
).
7.
T.
Fukuda
,
H.
Nishino
,
A.
Matsuura
, and
H.
Matsunaga
,
Jpn. J. Appl. Phys.
41
,
537
(
2002
).
8.
H.
Xia
,
D.
Xiang
,
P.
Mou
, and
W.
Yang
,
Thin Solid Films
638
,
1
(
2007
).
9.
Y. L.
Cheng
,
J.
Wu
,
T. J.
Chiu
,
S. A.
Chen
, and
Y. L.
Wang
,
J. Vac. Sci. Technol. B
29
,
031207
(
2011
).
10.
D.
Priyadarshini
 et al 
IEEE International Interconnect Technology Conference
, San Jose, CA, 20–23 May 2014 (IEEE, New York, NY, 2014), pp. 185–188.
11.
D. H.
Zhang
,
L. Y.
Yang
,
C. Y.
Li
,
P. W.
Lu
, and
P. D.
Foo
,
Thin Solid Films
504
,
235
(
2006
).
12.
S. W.
King
 et al,
ECS J. Solid State Sci. Technol.
1
,
N115
(
2012
).
13.
N.
Fainer
,
Y.
Rumyantsev
,
M.
Kosinova
,
E.
Maximovski
,
V.
Kesler
,
V.
Kirienko
, and
F.
Kuznetsov
,
Surf. Coat. Technol.
201
,
9269
(
2007
).
14.
H. E.
Tu
,
Y. H.
Chen
, and
J.
Leu
,
J. Electrochem. Soc.
159
,
G56
(
2012
).
15.
K.
Yamamoto
,
Y.
Koga
, and
S.
Fujiwara
,
Diam. Relat. Mater.
10
,
1921
(
2001
).
16.
A.
Limmanee
,
M.
Otsubo
,
T.
Sugiura
,
T.
Sato
,
S.
Miyajimai
,
A.
Yamada
, and
M.
Konagai
,
Thin Solid Films
516
,
652
(
2008
).
17.
R. H.
Bosch
,
L. E.
Cornelissen
,
H. C.
Knoops
, and
W. M.
Kessels
,
Chem. Mater.
28
,
5864
(
2016
).
18.
H. C.
Lee
,
Appl. Phys. Rev.
5
,
011108
(
2018
).
19.
M. M.
Rahman
and
S. K.
Hasan
,
Mater. Sci. Semicond. Process.
42
,
373
(
2016
).
20.
J. M.
Park
,
S. J.
Jang
,
L. L.
Yusup
,
W. J.
Lee
, and
S. I.
Lee
,
ACS Appl. Mater. Interfaces
8
,
20865
(
2016
).
21.
X. B.
Yan
,
B. K.
Tay
,
G.
Chen
, and
S. R.
Yang
,
Electrochem. Commun.
8
,
737
(
2006
).
22.
C. W.
Chen
,
C. C.
Huang
,
Y. Y.
Lin
,
L. C.
Chen
, and
K. H.
Chen
,
Diam. Relat. Mater.
14
,
1126
(
2005
).
23.
J.
Lee
,
W.
Jang
,
H.
Kim
,
S.
Shin
,
Y.
Kweon
,
K.
Lee
, and
H.
Jeon
,
Thin Solid Films
645
,
334
(
2018
).
24.
H.
Huang
,
K. J.
Winchester
,
A.
Suvorova
,
B. R.
Lawn
,
Y.
Liu
,
X. Z.
Hu
,
J. M.
Dell
, and
L.
Faraone
,
Mater. Sci. Eng. A
453
,
453
459
(
2006
).
25.
S. W.
King
,
ECS J. Solid State Sci. Technol.
4
,
N3029
(
2014
).
26.
H. J.
Kim
,
Q.
Shao
, and
Y. H.
Kim
,
Surf. Coat. Technol.
171
,
39
(
2003
).
27.
R. G.
Gordon
,
D.
Hausmann
,
E.
Kim
, and
J.
Shepard
,
Chem. Vap. Depos.
9
,
73
(
2003
).
You do not currently have access to this content.