β-Ga2O3, an emerging ultrawide bandgap (UWBG) semiconductor, offers promising properties for next-generation power electronics, chemical sensors, and solar-blind optoelectronics. Scaling down of β-Ga2O3 to the atomic level affords the advantages of two-dimensional (2D) materials, while maintaining the inherent properties of the parent bulk counterpart. Here, we demonstrate a simple approach to synthesize ultrathin millimeter-size β-Ga2O3 sheets using a liquid gallium squeezing technique. The GaOx nanolayer produced by stamping liquid gallium under the Cabrera–Mott oxidation was converted into few-atom-thick β-Ga2O3 via thermal annealing under atmospheric conditions. This approach was also applied to various substrates such as SiO2, Si, graphene, quartz, and sapphire to heteroepitaxially synthesize 2D β-Ga2O3 on a target substrate. Finally, we propose a patterning strategy combining the squeezing technique with conventional lithography to obtain a β-Ga2O3 layer with a controllable thickness and shape. Our synthetic method has the potential to overcome the limitations of conventional β-Ga2O3 growth methods, paving a path for applications in UWBG-based (opto-)electronics with a high throughput in a cost-effective manner.

1.
M.
Kim
,
J. H.
Seo
,
U.
Singisetti
, and
Z. Q.
Ma
,
J. Mater. Chem. C
5
,
8338
(
2017
).
2.
E.
Ahmadi
and
Y.
Oshima
,
J. Appl. Phys.
126
,
160901
(
2019
).
3.
E.
Monroy
,
F.
Omnes
, and
F.
Calle
,
Semicond. Sci. Technol.
18
,
R33
(
2003
).
4.
S. J.
Pearton
,
F.
Ren
,
Y. L.
Wang
,
B. H.
Chu
,
K. H.
Chen
,
C. Y.
Chang
,
W.
Lim
,
J. S.
Lin
, and
D. P.
Norton
,
Prog. Mater. Sci.
55
,
1
(
2010
).
5.
J.
Millan
,
P.
Godignon
,
X.
Perpina
,
A.
Perez-Tomas
, and
J.
Rebollo
,
IEEE Trans. Power Electron.
29
,
2155
(
2014
).
6.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
7.
J. C.
Yang
,
S.
Ahn
,
F.
Ren
,
S. J.
Pearton
,
S.
Jang
,
J.
Kim
, and
A.
Kuramata
,
Appl. Phys. Lett.
110
,
192101
(
2017
).
8.
J. E. N.
Swallow
 et al,
Chem. Mater.
32
,
8460
(
2020
).
9.
P.
Ranga
,
S. B.
Cho
,
R.
Mishra
, and
S.
Krishnamoorthy
,
Appl. Phys. Express
13
,
061009
(
2020
).
10.
M.
Pavesi
,
F.
Fabbri
,
F.
Boschi
,
G.
Piacentini
,
A.
Baraldi
,
M.
Bosi
,
E.
Gombia
,
A.
Parisini
, and
R.
Fornari
,
Mater. Chem. Phys.
205
,
502
(
2018
).
11.
B. J.
Baliga
,
IEEE Electron Device Lett.
10
,
455
(
1989
).
12.
S. J.
Pearton
,
J. C.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
13.
S.
Yoshioka
,
H.
Hayashi
,
A.
Kuwabara
,
F.
Oba
,
K.
Matsunaga
, and
I.
Tanaka
,
J. Phys.: Condens. Matter
19
,
346211
(
2007
).
14.
H.
Aida
,
K.
Nishiguchi
,
H.
Takeda
,
N.
Aota
,
K.
Sunakawa
, and
Y.
Yaguchi
,
Jpn. J. Appl. Phys.
47
,
8506
(
2008
).
15.
Z.
Galazka
 et al,
J. Cryst. Growth
404
,
184
(
2014
).
16.
K.
Hoshikawa
,
E.
Ohba
,
T.
Kobayashi
,
J.
Yanagisawa
,
C.
Miyagawa
, and
Y.
Nakamura
,
J. Cryst. Growth
447
,
36
(
2016
).
17.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Villora
,
K.
Shimamura
, and
S.
Yamakoshi
,
Appl. Phys. Express
5
,
035502
(
2012
).
18.
Y.
Tomm
,
P.
Reiche
,
D.
Klimm
, and
T.
Fukuda
,
J. Cryst. Growth
220
,
510
(
2000
).
19.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
,
Jpn. J. Appl. Phys.
55
,
1202A2
(
2016
).
20.
B.
Chatterjee
,
A.
Jayawardena
,
E.
Heller
,
D. W.
Snyder
,
S.
Dhar
, and
S.
Choi
,
Rev. Sci. Instrum.
89
,
114903
(
2018
).
21.
Y. Y.
Zhang
,
Q.
Su
,
J.
Zhu
,
S.
Koirala
,
S. J.
Koester
, and
X. J.
Wang
,
Appl. Phys. Lett.
116
,
202101
(
2020
).
22.
D.
Splith
,
S.
Muller
,
F.
Schmidt
,
H.
von Wenckstern
,
J. J.
van Rensburg
,
W. E.
Meyer
, and
M.
Grundmann
,
Phys. Status Solidi A
211
,
40
(
2014
).
23.
F. B.
Zhang
,
K.
Saito
,
T.
Tanaka
,
M.
Nishio
, and
Q. X.
Guo
,
J. Cryst. Growth
387
,
96
(
2014
).
24.
M.
Bosi
,
P.
Mazzolini
,
L.
Seravalli
, and
R.
Fornari
,
J. Mater. Chem. C
8
,
10975
(
2020
).
25.
S.
Rafique
,
L.
Han
,
A. T.
Neal
,
S.
Mou
,
J.
Boeckl
, and
H.
Zhao
,
Phys. Status Solidi A
215
,
1700467
(
2018
).
26.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
27.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
28.
F. N.
Xia
,
H.
Wang
,
D.
Xiao
,
M.
Dubey
, and
A.
Ramasubramaniam
,
Nat. Photonics
8
,
899
(
2014
).
29.
J.
Jia
,
S. K.
Jang
,
S.
Lai
,
J.
Xu
,
Y. J.
Choi
,
J. H.
Park
, and
S.
Lee
,
ACS Nano
9
,
8729
(
2015
).
30.
J.
Kwon
,
J. Y.
Lee
,
Y. J.
Yu
,
C. H.
Lee
,
X.
Cui
,
J.
Honed
, and
G. H.
Lee
,
Nanoscale
9
,
6151
(
2017
).
31.
J. N.
Coleman
 et al,
Science
331
,
568
(
2011
).
32.
S. K.
Barman
and
M. N.
Huda
,
Phys. Status Solidi RRL
13
,
1800554
(
2019
).
33.
J.
Su
,
R.
Guo
,
Z.
Lin
,
S.
Zhang
,
J.
Zhang
,
J.
Chang
, and
Y.
Hao
,
J. Phys. Chem. C
122
,
24592
(
2018
).
34.
J.
Su
,
J. J.
Zhang
,
R.
Guo
,
Z. H.
Lin
,
M. Y.
Liu
,
J. C.
Zhang
,
J. J.
Chang
, and
Y.
Hao
,
Mater. Des.
184
,
108197
(
2019
).
35.
J.
Bae
,
H. W.
Kim
,
I. H.
Kang
, and
J.
Kim
,
J. Mater. Chem. C
8
,
2687
(
2020
).
36.
S.
Oh
,
J.
Kim
,
F.
Ren
,
S. J.
Pearton
, and
J.
Kim
,
J. Mater. Chem. C
4
,
9245
(
2016
).
37.
M. M. Y. A.
Alsaif
 et al,
Adv. Mater. Interfaces
6
,
1900007
(
2019
).
38.
A.
Zavabeti
 et al,
Science
358
,
332
(
2017
).
39.
M. M. Y. A.
Alsaif
 et al,
ACS Appl. Nano Mater.
2
,
4665
(
2019
).
40.
M. B.
Ghasemian
 et al,
Adv. Funct. Mater.
29
,
1901649
(
2019
).
41.
Y. X.
Chen
,
K. L.
Liu
,
J. X.
Liu
,
T. R.
Lv
,
B.
Wei
,
T.
Zhang
,
M. Q.
Zeng
,
Z. C.
Wang
, and
L.
Fu
,
J. Am. Chem. Soc.
140
,
16392
(
2018
).
42.
N.
Syed
 et al,
Nat. Commun.
9
,
1
(
2018
).
43.
N.
Syed
 et al,
Adv. Funct. Mater.
27
,
1702295
(
2017
).
44.
N.
Cabrera
and
N. F.
Mott
,
Rep. Prog. Phys.
12
,
163
(
1949
).
45.
B.
Heshmatpour
and
D. A.
Stevenson
,
J. Electroanal. Chem. Interf. Electrochem.
130
,
47
(
1981
).
46.
M.
Zinkevich
and
F.
Aldinger
,
J. Am. Ceram. Soc.
87
,
683
(
2004
).
47.
C.
Kranert
,
C.
Sturm
,
R.
Schmidt-Grund
, and
M.
Grundmann
,
Sci. Rep.
6
,
35964
(
2016
).
48.
N.
Winkler
,
R. A.
Wibowo
,
W.
Kautek
,
G.
Ligorio
,
E. J. W.
List-Kratochvil
, and
T.
Dimopoulos
,
J. Mater. Chem. C
7
,
69
(
2019
).
49.
S.
Yadav
,
S.
Dash
,
A. K.
Patra
,
G. R.
Umapathy
,
S.
Ojha
,
S. P.
Patel
,
R.
Singh
, and
Y. S.
Katharria
,
ECS J. Solid State Sci. Technol.
9
,
045015
(
2020
).
50.
Y.
Kokubun
,
K.
Miura
,
F.
Endo
, and
S.
Nakagomi
,
Appl. Phys. Lett.
90
,
031912
(
2007
).
51.
A.
Goyal
,
B. S.
Yadav
,
O. P.
Thakur
, and
A. K.
Kapoor
,
Physics of Semiconductor Devices
(
Springer International Publishing
,
Cham
,
2014
).
52.
L.-X.
Qian
,
H.-F.
Zhang
,
P. T.
Lai
,
Z.-H.
Wu
, and
X.-Z.
Liu
,
Opt. Mater. Express
7
,
3643
(
2017
).
53.
S.
Jiao
,
H.
Lu
,
X.
Wang
,
Y.
Nie
,
D.
Wang
,
S.
Gao
, and
J.
Wang
,
ECS J. Solid State Sci. Technol.
8
,
Q3086
(
2019
).
54.
S.-L.
Ou
,
D.-S.
Wuu
,
Y.-C.
Fu
,
S.-P.
Liu
,
R.-H.
Horng
,
L.
Liu
, and
Z.-C.
Feng
,
Mater. Chem. Phys.
133
,
700
(
2012
).
55.
R.
Jangir
,
T.
Ganguli
,
S.
Porwal
,
P.
Tiwari
,
S. K.
Rai
,
I.
Bhaumik
,
L. M.
Kukreja
,
P. K.
Gupta
, and
S. K.
Deb
,
J. Appl. Phys.
114
,
074309
(
2013
).
56.
K.
Lorenz
 et al,
Doping of Ga2O3 Bulk Crystals and NWs by Ion Implantation
(
International Society for Optics and Photonics
,
San Francisco
,
2014
).
57.
T.
Onuma
,
S.
Fujioka
,
T.
Yamaguchi
,
M.
Higashiwaki
,
K.
Sasaki
,
T.
Masui
, and
T.
Honda
,
Appl. Phys. Lett.
103
,
041910
(
2013
).
58.
L.
Dong
,
R.
Jia
,
B.
Xin
, and
Y.
Zhang
,
J. Vac. Sci. Technol. A
34
,
060602
(
2016
).
59.
F.
Ricci
,
F.
Boschi
,
A.
Baraldi
,
A.
Filippetti
,
M.
Higashiwaki
,
A.
Kuramata
,
V.
Fiorentini
, and
R.
Fornari
,
J. Phys.: Condens. Matter
28
,
224005
(
2016
).
60.
S. R.
Thomas
,
G.
Adamopoulos
,
Y.-H.
Lin
,
H.
Faber
,
L.
Sygellou
,
E.
Stratakis
,
N.
Pliatsikas
,
P. A.
Patsalas
, and
T. D.
Anthopoulos
,
Appl. Phys. Lett.
105
,
092105
(
2014
).
61.
M. M.
Ruan
,
L. X.
Song
,
Z.
Yang
,
Y.
Teng
,
Q. S.
Wang
, and
Y. Q.
Wang
,
J. Mater. Chem. C
5
,
7161
(
2017
).
62.
M. G.
Stanford
,
P. D.
Rack
, and
D.
Jariwala
,
npj 2D Mater. Appl.
2
,
20
(
2018
).
63.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G. V. d.
Walle
,
Appl. Phys. Lett.
97
,
142106
(
2010
).
64.
P. H.
Carey
,
F.
Ren
,
D. C.
Hays
,
B. P.
Gila
,
S. J.
Pearton
,
S.
Jang
, and
A.
Kuramata
,
Appl. Surf. Sci.
422
,
179
(
2017
).
65.
S. C.
Hardy
,
J. Cryst. Growth
71
,
602
(
1985
).
66.
I. D.
Joshipura
,
H. R.
Ayers
,
G. A.
Castillo
,
C.
Ladd
,
C. E.
Tabor
,
J. J.
Adams
, and
M. D.
Dickey
,
ACS Appl. Mat. Interfaces
10
,
44686
(
2018
).
67.
A. J.
Kinloch
,
Adhesion and Adhesives: Science and Technology
(
Springer Netherlands
,
Dordrecht
,
1987
).
68.
R.
Schewski
 et al,
Appl. Phys. Express
8
,
011101
(
2015
).
69.
B.
Choi
,
B.
Allabergenov
,
H.-K.
Lyu
, and
S. E.
Lee
,
Appl. Phys. Express
11
,
061105
(
2018
).
70.
See supplementary material at http://dx.doi.org/10.1116/6.0000927 for additional information on Raman spectrum, XRD pattern, XPS data, schematic of vdW epitaxy with related height profile and UV-vis spectra, energy band structures of the 2D β-Ga2O3 and bulk β-Ga2O3, optical images of β-Ga2O3 synthesized on Pt, GaAs, and sapphire substrates, AFM image of the patterned β-Ga2O3, and schematic of the continuous fabrication process.

Supplementary Material

You do not currently have access to this content.