Heterojunction field-effect transistors based on the β-(AlxGa1−x)2O3/Ga2O3 heterostructure grown by ozone-assisted molecular beam epitaxy were demonstrated for the first time. Al composition ratios in the 14%–23% range were validated using x-ray diffraction on the three samples grown for this study. Electrochemical capacitance-voltage (ECV) measurements showed the presence of a charge sheet in the delta-doped (AlxGa1−x)2O3 barrier layer. Secondary ion mass spectroscopy and ECV measurements also revealed an unintentional Si peak at the (AlxGa1−x)2O3/Ga2O3 interface. Direct current (IDS-VGS) and transconductance (Gm-VGS) measurements demonstrated depletion-mode transistor operation as well as the presence of a parallel conduction channel. A one-dimensional Poisson model suggested that dopant redistribution in the delta-doped region could cause a secondary channel to form in the barrier in addition to the primary channel near the (AlxGa1−x)2O3/Ga2O3 interface under certain conditions met in these samples. Fabricated devices on sample A did not exhibit breakdown up to the measurement limit of 1100 V, with stability after ten cycles. A maximum output drain current density of 22 mA/mm was measured on sample B. Room temperature Hall measurements yielded a sheet carrier density of 1.12 × 1013 cm−2 with corresponding Hall mobility of 95 cm2/V s in sample C.

1.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
 IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
2.
M.
Higashiwaki
and
G.
Jessen
,
Appl. Phys. Lett.
112
,
060401
(
2018
).
3.
S. J.
Pearton
,
F.
Ren
,
M. J.
Tadjer
, and
J.
Kim
,
J. Appl. Phys.
124
,
220901
(
2018
).
4.
H.
Peelaers
,
J. B.
Varley
,
J. S.
Speck
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
112
,
242101
(
2018
).
5.
C. H.
Liao
,
K. -H.
Li
,
C. G.
Torres-Castanedo
,
G.
Zhang
, and
X.
Li
,
Appl. Phys. Lett.
118
,
032103
(
2021
).
6.
A. F. M
Anhar Uddin Bhuiyan
 et al,
APL Mater.
8
,
031104
(
2020
).
7.
S.
Krishnamoorthy
,
Z.
Xia
,
S.
Bajaj
,
M.
Brenner
, and
S.
Rajan
,
Appl. Phys. Express
10
,
051102
(
2017
).
8.
C.
Joishi
,
Y.
Zhang
,
Z.
Xia
,
W.
Sun
,
A. R.
Arehart
,
S.
Ringel
,
S.
Lodha
, and
S.
Rajan
,
IEEE Electron Device Lett.
40
,
1241
(
2019
).
9.
Y.
Zhang
,
C.
Joishi
,
Z.
Xia
,
M.
Brenner
,
S.
Lodha
, and
S.
Rajan
,
Appl. Phys. Lett.
112
,
233503
(
2018
).
10.
Y.
Zhang
,
Z.
Xia
,
J.
McGlone
,
W.
Sun
,
C.
Joishi
,
A. R.
Arehart
,
S. A.
Ringel
, and
S.
Rajan
,
IEEE Trans. Electron Device
66
,
1574
(
2019
).
11.
Z.
Xia
,
C.
Joishi
,
S.
Krishnamoorthy
,
S.
Bajaj
,
Y.
Zhang
,
M.
Brenner
,
S.
Lodha
, and
S.
Rajan
,
IEEE Electron Device Lett.
39
,
568
(
2018
).
12.
S.
Krishnamoorthy
 et al,
Appl. Phys. Lett.
111
,
023502
(
2017
).
13.
E.
Ahmadi
,
O. S.
Koksaldi
,
X.
Zheng
,
T.
Mates
,
Y.
Oshima
,
U. K.
Mishra
, and
J. S.
Speck
,
Appl. Phys. Express
10
,
071101
(
2017
).
14.
S. W.
Kaun
,
F.
Wu
, and
J. S.
Speck
,
J. Vac. Sci. Technol., A
33
,
041508
(
2015
).
15.
C.
Joishi
,
Z.
Xia
,
J. S.
Jamison
,
S. H.
Sohel
,
R. C.
Myers
,
S.
Lodha
, and
S.
Rajan
,
IEEE Trans. Electr. Dev.
67
,
4813
4819
(
2020
), and references therein.
16.
P.
Vogt
,
A.
Mauze
,
F.
Wu
,
B.
Bonef
, and
J. S.
Speck
,
Appl. Phys. Express
11
,
115503
(
2018
).
17.
P.
Ranga
,
A.
Bhattacharyya
,
A.
Rishinaramangalam
,
Y. K.
Ooi
,
M. A.
Scarpulla
,
D.
Feezell
, and
S.
Krishnamoorthy
,
Appl. Phys. Express
13
,
045501
(
2020
).
18.
C.
Kranert
,
M.
Jenderka
,
J.
Lenzner
,
M.
Lorenz
,
H.
von Wenckstern
,
R.
Schmidt-Grund
, and
M.
Grundmann
,
J. Appl. Phys.
117
,
125703
(
2015
).
19.
H. L.
Störmer
,
R.
Dingle
,
A. C.
Gossard
,
W.
Wiegmann
, and
M. D.
Sturge
,
Solid State Commun.
29
,
705
(
1979
).
20.
C. E. C.
Wood
,
G.
Metze
,
J.
Berry
, and
L. F.
Eastman
,
J. Appl. Phys.
51
,
383
(
1980
).
21.
E. F.
Schubert
,
J. Vac. Sci. Technol., A
8
,
2980
(
1990
).
22.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
23.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Víllora
,
K.
Shimamura
, and
S.
Yamakoshi
,
Appl. Phys. Express
5
,
035502
(
2012
).
24.
Y.
Oshima
,
E.
Ahmadi
,
S. C.
Badescu
,
F.
Wu
, and
J. S.
Speck
,
Appl. Phys. Express
9
,
061102
(
2016
).
25.
J. A.
Switzer
,
J. C.
Hill
,
N. K.
Mahenderkar
, and
Y.-C.
Liu
,
ACS Appl. Mater. Interfaces
8
,
15828
(
2016
).
26.
M. A.
Mastro
,
M. J.
Tadjer
,
J.
Kim
,
F.
Ren
, and
S. J.
Pearton
,
J. Vac. Sci. Technol. A
39
,
023412
(
2021
).
27.
N.
Ma
,
N.
Tanen
,
A.
Verma
,
Z.
Guo
,
T.
Luo
,
H. G.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
109
,
212101
(
2016
).
28.
A. T.
Neal
 et al,
Appl. Phys. Lett.
113
,
062101
(
2018
).
29.
Y.
Zhang
 et al,
Appl. Phys. Lett.
112
,
173502
(
2018
).
30.
D.
Shahin
,
M. J.
Tadjer
,
V. D.
Wheeler
,
A. D.
Koehler
,
T. J.
Anderson
,
C. R.
Eddy
, Jr.
, and
A.
Cristou
,
Appl. Phys. Lett.
112
,
042107
(
2018
).
31.
P.
Fisher
,
O.
Maksimov
,
H.
Du
,
V. D.
Heydemann
,
M.
Skowronski
, and
P. A.
Salvador
,
Microelectron. J.
37
,
1493
(
2006
).
32.
H.
Hong
,
J.
Kim
,
X.
Fang
,
S.
Hong
, and
T.-C.
Chiang
,
Appl. Phys. Lett.
110
,
021601
(
2017
).
33.
M.
Fujita
,
N.
Kawamoto
,
T.
Tatsumi
,
K.
Yamagishi
, and
Y.
Horikoshi
,
Jpn. J. Appl. Phys.
42
,
67
(
2003
).
34.
A.
Neubecker
,
T.
Pompl
,
T.
Doll
,
W.
Hansch
, and
I.
Eisele
,
Thin Solid Films
310
,
19
(
1997
).
35.
See supplementary material at https://doi.org/10.1116/6.0000932 for detailed x-ray diffraction data, contact resistance measurements, and complete simulation results.

Supplementary Material

You do not currently have access to this content.