The photoluminescence, excitation, and absorption spectra as well as the electrical conductivity of β-Ga2O3:Cr and β-Ga2O3:Cr,Mg single crystals were studied. The as-grown β-Ga2O3:Cr crystals had a green color, the conductivity at about 10−2–10−3 Ω−1 cm−1, and a low yield of Cr3+ impurity luminescence. Annealing in oxygen atmosphere led to a strong increase in Cr3+ red luminescence yield, increase in the resistivity, and changes in the absorption and excitation spectra. Similarly, increases in the Cr3+ luminescence yield and resistivity were observed after codoping of β-Ga2O3:Cr crystals with magnesium (Mg2+). The registered changes in the Cr3+ luminescence yield, electrical conductivity, and in the absorption and excitation spectra are considered to be due to the shift in the Fermi level. In the as-grown β-Ga2O3:Cr crystals, the Fermi level is located near the bottom of the conduction band, and most chromium ions are in the Cr2+ charge state. Annealing in an oxygen atmosphere as well as codoping of the crystals with chromium and magnesium impurities moves the Fermi level toward the middle of the bandgap and recharges the chromium ions to the Cr3+ state.

1.
M.
Higashiwaki
,
A.
Kuramata
,
H.
Murakami
, and
Y.
Kumagai
,
J. Phys. D: Appl. Phys.
50
,
333002
(
2017
).
2.
S. J.
Pearton
,
Jiancheng
Yang
,
Patrick H.
Cary
 IV
,
F.
Ren
,
Jihyun
Kim
,
Marko J.
Tadjer
, and
Michael A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
3.
F.
Ren
,
J. C.
Yang
,
C.
Fares
, and
S. J.
Pearton
,
MRS Commun.
9
,
77
(
2019
).
4.
S.
Pearton
,
M.
Mastro
, and
F.
Ren
,
Gallium Oxide Technology, Devices and Applications
(
Elsevier
,
San Diego
,
CA
,
2018
), p.
510
.
5.
Z.
Liu
,
T.
Yamazaki
,
Y.
Shen
,
T.
Kikuta
,
N.
Nakatani
, and
Y.
Li
,
Sens. Actuators B
6
,
666
(
2008
).
6.
A.
Luchechko
,
V.
Vasyltsiv
,
L.
Kostyk
, and
B.
Pavlyk
,
Phys. Status Solidi A
216
,
1900444
(
2019
).
7.
X.
Chen
,
F.
Ren
,
S.
Gu
, and
J.
Ye
,
Photonics Res.
7
,
381
(
2019
).
8.
S.
Ahn
and
F.
Ren
,
J. Vac. Sci. Technol. B
34
,
041207
(
2016
).
9.
T.
Miyata
,
T.
Nakatani
, and
T.
Minami
,
J. Lumin.
87–89
,
1183
(
2000
).
10.
D.
Guo
,
Q.
Guo
,
Z.
Chen
,
Z.
Wu
,
P.
Li
, and
W.
Tang
,
Mater. Today Phys.
11
,
100157
(
2019
).
11.
V. B.
Mykhaylyk
,
H.
Kraus
,
Y.
Zhydachevskyy
,
V.
Tsiumra
,
A.
Luchechko
,
A.
Wagner
, and
A.
Suchocki
,
Sensors
20
,
5259
(
2020
).
12.
X. S.
Wang
,
J. Q.
Situ
,
X. Y.
Ying
,
H.
Chen
,
H. F.
Pan
,
Y.
Jin
, and
Y. Z.
Du
,
Acta Biomater.
22
,
164
(
2015
).
13.
H. H.
Tippins
,
Phys. Rev.
137
,
865
(
1965
).
14.
V. I.
Vasyltsiv
,
Ya. I.
Rym
, and
Ya. M.
Zakharko
,
Proc. SPIE
2698
,
255
(
1996
).
15.
Y.
Tokida
and
S.
Adachi
,
J. Appl. Phys.
112
,
063522
(
2012
).
16.
A.
Luchechko
,
V.
Vasyltsiv
,
Y.
Zhydachevskii
,
M.
Kushlyk
,
S.
Ubizskii
, and
A.
Suchocki
,
J. Phys. D: Appl. Phys.
53
,
354001
(
2020
).
17.
G.
Naresh-Kumar
,
H.
Macintyre
,
S.
Shanthi
,
P. R.
Edwards
,
R. W.
Martin
,
D.
Krishnamurthy
,
Kohei
Sasaki
, and
Akito
Kuramata
,
Phys. Status Solidi B
258
,
2000465
(
2020
).
18.
Y. Y.
Lu
,
F.
Liu
,
Z. J.
Gu
, and
Z. W.
Pan
,
J. Lumin.
131
,
2784
(
2011
).
19.
Ya. M
Zakharko
,
A. P.
Luchechko
,
I. M.
Syvorotka
,
I. I.
Syvorotka
,
S. B.
Ubizskii
, and
S. S.
Melnyk
,
Phys. Status Solidi C
2
,
551
(
2005
).
20.
A.
Luchechko
,
V.
Vasyltsiv
,
L.
Kostyk
,
O.
Tsvetkova
, and
B.
Pavlyk
,
ECS J. Solid State Sci. Technol.
9
,
045008
(
2020
).
21.
R. C.
Powell
in
Physics of Solid State Laser Materials
, edited by
R. C.
Powell
(
Springer
,
New York
,
1998
).
22.
Z.
Galazka
 et al,
J. Cryst. Growth
404
,
184
(
2014
).
23.
A.
Luchechko
,
V.
Vasyltsiv
,
L.
Kostyk
, and
O.
Tsvetkova
,
Acta Phys. Pol. A
133
,
811
(
2018
).
24.
V.
Vasyltsiv
,
Ya
Zakharko
, and
Ya
Rym
,
Ukr. J. Phys.
33
,
1320
(
1988
).
25.
L.
Binet
and
D.
Gourier
,
J. Phys. Chem. Solids
59
,
1241
(
1998
).
26.
T.
Onuma
,
Y.
Nakata
,
K.
Sasaki
,
T.
Masui
,
T.
Yamaguchi
,
T.
Honda
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
J. Appl. Phys.
124
,
075103
(
2018
).
27.
Y. K.
Frodason
,
K. M.
Johansen
,
L.
Vines
, and
J. B.
Varley
,
J. Appl. Phys.
127
,
075701
(
2020
).
28.
Q. D.
Ho
,
T.
Frauenheim
, and
P.
Deák
,
Phys. Rev. B
97
,
115163
(
2018
).
29.
A.
Luchechko
,
V.
Vasyltsiv
,
L.
Kostyk
,
O.
Tsvetkova
, and
B.
Pavlyk
,
J. Nano Electron. Phys.
11
,
03035
(
2019
).
30.
E.
Chikoidze
 et al,
Mater. Today Phys.
3
,
118
(
2017
).
31.
A.
Luchechko
,
V.
Vasyltsiv
,
L.
Kostyk
,
O.
Tsvetkova
, and
A. I.
Popov
,
Nucl. Instrum. Methods Phys. Res. Sect. B
441
,
12
(
2019
).
32.
T. C.
Lovejoy
 et al,
J. Appl. Phys.
111
,
123716
(
2012
).
33.
S.
Sugano
and
Y.
Tanabe
,
J. Phys. Soc. Jpn.
13
,
880
(
1958
).
34.
S.
Kück
,
K.
Petermann
,
U.
Pohlmann
, and
G.
Huber
,
J. Lumin.
68
,
1
(
1996
).
You do not currently have access to this content.