In this research, we examined the impact of solution concentration on the photovoltaic and the material properties of perovskite solar cells (PSCs) obtained from dehydrated Pb-acetate precursors. The perovskite solution was deposited by a one-step spin-coating technique followed by 5 min of thermal annealing on a hotplate at the temperature of 90 °C to form the perovskite active layer. The PSC device structure adopted was the inverted planar architecture. The precursor solution concentrations were varied from 0.7 to 1.1M, with the optimal solution concentration found to be 1.0M. This concentration results in a power conversion efficiency of 12.2%, an open circuit voltage (Voc) of 0.94 V, a short circuit photocurrent density (Jsc) of 20.71 mA/cm2, and a fill factor of 62.69%. Our investigations revealed that the precursor solution concentration had a huge effect on the quality of the perovskite film and the photovoltaic properties of the PSCs.

1.
M. A.
Green
,
A.
Ho-Baillie
, and
H. J.
Snaith
,
Nat. Photonics
8
,
506
(
2014
).
2.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
,
Science
342
,
341
(
2013
).
3.
G.
Xing
,
N.
Mathews
,
S.
Sun
,
S. S.
Lim
,
Y. M.
Lam
,
M.
Graẗzel
,
S.
Mhaisalkar
, and
T. C.
Sum
,
Science
342
,
344
(
2013
).
4.
H. S.
Kim
 et al,
Sci. Rep.
2
,
591
(
2012
).
5.
P.
Docampo
,
J. M.
Ball
,
M.
Darwich
,
G. E.
Eperon
, and
H. J.
Snaith
,
Nat. Commun.
4
,
2761
(
2013
).
6.
W. S.
Yang
 et al,
Science
356
,
1376
(
2017
).
8.
M.-H.
Liu
,
Z.-J.
Zhou
,
P.-P.
Zhang
,
Q.-W.
Tian
,
W.-H.
Zhou
,
D.-X.
Kou
, and
S.-X.
Wu
,
Opt. Express
24
,
A1349
(
2016
).
9.
L.
Etgar
,
P.
Gao
,
Z.
Xue
,
Q.
Peng
,
A. K.
Chandiran
,
B.
Liu
,
M. K.
Nazeeruddin
, and
M.
Grätzel
,
J. Am. Chem. Soc.
134
,
17396
(
2012
).
11.
T. C.
Sum
and
N.
Mathews
,
Energy Environ. Sci.
7
,
2518
(
2014
).
12.
13.
Q.
Chen
,
H.
Zhou
,
Z.
Hong
,
S.
Luo
,
H. S.
Duan
,
H. H.
Wang
,
Y.
Liu
,
G.
Li
, and
Y.
Yang
,
J. Am. Chem. Soc.
136
,
622
(
2014
).
14.
J. H.
Heo
 et al,
Nat. Photonics
7
,
486
(
2013
).
15.
J.
Burschka
,
N.
Pellet
,
S. J.
Moon
,
R.
Humphry-Baker
,
P.
Gao
,
M. K.
Nazeeruddin
, and
M.
Grätzel
,
Nature
499
,
316
(
2013
).
16.
X.
Cao
,
L.
Zhi
,
Y.
Jia
,
Y.
Li
,
K.
Zhao
,
X.
Cui
,
L.
Ci
,
D.
Zhuang
, and
J.
Wei
,
ACS Appl. Mater. Interfaces
11
,
7639
(
2019
).
17.
S.
Venkatesan
,
M.
Hasan
,
J.
Kim
,
N. R.
Rady
,
S.
Sohal
,
E.
Neier
,
Y.
Yao
, and
A.
Zakhidov
,
J. Mater. Chem. C
5
,
10114
(
2017
).
18.
A.
Buin
,
P.
Pietsch
,
J.
Xu
,
O.
Voznyy
,
A. H.
Ip
,
R.
Comin
, and
E. H.
Sargent
,
Nano Lett.
14
,
6281
(
2014
).
19.
D. T.
Moore
,
H.
Sai
,
K. W.
Tan
,
L. A.
Estroff
, and
U.
Wiesner
,
APL Mater.
2
,
081802
(
2014
).
20.
F. K.
Aldibaja
,
L.
Badia
,
E.
Mas-Marzá
,
R. S.
Sánchez
,
E. M.
Barea
, and
I.
Mora-Sero
,
J. Mater. Chem. A
3
,
9194
(
2015
).
21.
D. M.
Sanni
,
Y.
Chen
,
A. S.
Yerramilli
,
E.
Ntsoenzok
,
J.
Asare
,
S. A.
Adeniji
,
O. V.
Oyelade
,
A. A.
Fashina
, and
T. L.
Alford
,
Mater. Renew. Sustain. Energy
8
,
3
(
2019
).
22.
A. S.
Yerramilli
,
Y.
Chen
,
D.
Sanni
,
J.
Asare
,
N. D.
Theodore
, and
T. L.
Alford
,
Org. Electron.
59
107
112
(
2018
).
23.
Y.
Chen
,
A.
Yerramilli
,
Y.
Shen
,
Z.
Zhao
, and
T.
Alford
,
Sol. Energy Mater. Sol. Cells
174
,
478
(
2018
).
24.
T. Y.
Hsieh
,
T.
Sen Su
,
M.
Ikegami
,
T. C.
Wei
, and
T.
Miyasaka
,
Mater. Today Energy
14
,
100125
(
2019
).
25.
J.
Qing
,
H. T.
Chandran
,
H. T.
Xue
,
Z. Q.
Guan
,
T. L.
Liu
,
S. W.
Tsang
,
M. F.
Lo
, and
C. S.
Lee
,
Org. Electron.
27
,
12
(
2015
).
26.
M.
Sima
,
E.
Vasile
, and
M.
Sima
,
Mater. Res. Bull.
89
,
89
(
2017
).
27.
A. S.
Yerramilli
,
Y.
Chen
, and
T. L.
Alford
,
MRS Commun.
1
,
189
193
(
2018
).
28.
W.
Zhang
 et al,
Nat. Commun.
6
,
10030
(
2015
).
29.
Y.
Ogomi
 et al,
J. Phys. Chem. Lett.
5
(
6
),
1004
1011
(
2014
).
30.
C. C.
Stoumpos
,
C. D.
Malliakas
, and
M. G.
Kanatzidis
,
Inorg. Chem.
52
(
15
),
9019
9038
(
2013
).
31.
G.
Namkoong
,
A. A.
Mamun
,
T. T.
Ava
,
K.
Zhang
, and
H.
Baumgart
,
Org. Electron.
42
,
228
(
2017
).
32.
G.
Namkoong
,
H. J.
Jeong
,
A.
Mamun
,
H.
Byun
,
D.
Demuth
, and
M. S.
Jeong
,
Sol. Energy Mater. Sol. Cells
155
,
134
(
2016
).
33.
M.
Rai
,
L. H.
Wong
, and
L.
Etgar
,
J. Phys. Chem. Lett.
11
(
19
),
8189
8194
(
2020
).
34.
M. I.
Alturisa
,
J.
Wira
,
Herman
Mardiyati
, and
R.
Hidayat
,
J. Phys.: Conf. Ser.
877
,
12046
(
2017
).
35.
O. K.
Ukoba
,
A. C.
Eloka-Eboka
, and
F. L.
Inambao
,
Energy Procedia
142
,
236
(
2017
).
36.
J.
Raj Mohamed
and
L.
Amalraj
,
J. Asian Ceram. Soc.
4
,
357
(
2016
).
37.
Z.
Xiao
,
Q.
Dong
,
C.
Bi
,
Y.
Shao
,
Y.
Yuan
, and
J.
Huang
,
Adv. Mater.
26
,
6503
6509
(
2014
).
38.
T.
Yoshida
,
S.
Fujikake
,
S.
Kato
,
M.
Tanda
,
K.
Tabuchi
,
A.
Takano
,
Y.
Ichikawa
, and
H.
Sakai
,
Sol. Energy Mater. Sol. Cells
48
,
383
(
1997
).
39.
Y.
Shao
,
Z.
Xiao
,
C.
Bi
,
Y.
Yuan
, and
J.
Huang
,
Nat. Commun.
5
,
5784
(
2014
).
40.
J. W.
Jung
,
C. C.
Chueh
, and
A. K. Y.
Jen
,
Adv. Mater.
27
,
7874
(
2015
).
41.
J. H.
Kim
,
P. W.
Liang
,
S. T.
Williams
,
N.
Cho
,
C. C.
Chueh
,
M. S.
Glaz
,
D. S.
Ginger
, and
A. K. Y.
Jen
,
Adv. Mater.
27
,
695
(
2015
).
42.
43.
D. M.
Sanni
,
E.
Ntsoenzok
,
E.
Saintaimé
,
S. A.
Adeniji
,
O. V.
Oyelade
,
R. K.
Koech
,
D. I.
Amune
, and
A.
Bello
,
AIP Adv.
10
,
075006
(
2020
).
44.
See supplementary material at https://doi.org/10.1116/6.0000714 for Figs. S1 and S2.

Supplementary Material

You do not currently have access to this content.