In this study, amorphous films of molybdenum oxide (MoOx) had been prepared by plasma enhanced atomic layer deposition (PEALD) technique using molybdenum hexacarbonyl (Mo(CO)6) as a metal precursor and the mixture gas of O2/Ar as reactants. The influence of plasma power from 1000–3000 W on PEALD-MoOx films’ structure properties was investigated, and the deposition mechanism was proposed. Based on the results, the plasma power playing a crucial role in depositing MoOx films is concluded. A maximum deposition rate of MoOx films is 0.76 Å/cycle, which is achieved at the optimal plasma power of 2000 W owing to the enhancement of plasma radicals’ intensity. The Mo5+ and Mo6+ oxidation states that emerged in all the films were illustrated by x-ray photoelectron spectroscopy studies, which means oxygen deficiency in substoichiometric MoOx films. The proportion of no-lattice oxygen decreases first and then increases with the increase of the plasma power. A low power and a high power may lead to deficient oxidation and obvious ion bombardment effect, respectively, which lead to the reduction of MoOx film quality, as indicated by the refractive index, atomic force microscopy, and scanning electron microscopy. The clarification of the effect of plasma power on PEALD-MoOx thin films is greatly beneficial to the application in high performance electronic devices.

1.
T.
He
and
J.
Yao
,
J. Photochem. Photobiol., C
4
,
125
(
2003
).
2.
T.
Ivanova
,
K. A.
Gesheva
,
G.
Popkirov
,
M.
Ganchev
, and
E.
Tzvetkova
,
Mater. Sci. Eng., B
119
,
232
(
2005
).
3.
J.
Scarminio
,
A.
Lourenco
, and
A.
Gorenstein
,
Thin Solid Films
302
,
66
(
1997
).
4.
T. S.
Sian
and
G. B.
Reddy
,
Sol. Energy Mater. Sol. Cells
82
,
375
(
2004
).
5.
Y.
Guo
and
J.
Robertson
,
Appl. Phys. Lett.
105
,
222110
(
2014
).
6.
K. E.
Lee
,
L.
Liu
, and
T. L.
Kelly
,
J. Phys. Chem. C
118
,
27735
(
2014
).
7.
H.
Zhang
,
Q.
Fu
,
W.
Zeng
, and
D.
Ma
,
J. Mater. Chem. C
2
,
9620
(
2014
).
8.
P.
Meduri
,
E.
Clark
,
J. H.
Kim
,
E.
Dayalan
,
G. U.
Sumanasekera
, and
M. K.
Sunkara
,
Nano Lett.
12
,
1784
(
2012
).
9.
Y. C.
Tseng
,
A. U.
Mane
,
J. W.
Elam
, and
S. B.
Darling
,
Sol. Energy Mater. Sol. Cells
99
,
235
(
2012
).
10.
Y.
Zhao
,
A. M.
Nardes
, and
K.
Zhu
,
Appl. Phys. Lett.
104
,
213906
(
2014
).
11.
C.
Battaglia
 et al,
Nano Lett.
14
,
967
(
2014
).
12.
J.
Bullock
,
A.
Cuevas
,
T.
Allen
, and
C.
Battaglia
,
Appl. Phys. Lett.
105
,
232109
(
2014
).
13.
H.
Liu
,
J. Mol. Eng. Mater.
4
,
1640010
(
2016
).
14.
T.
Siciliano
,
A.
Tepore
,
E.
Filippo
,
G.
Micocci
, and
M.
Tepore
,
Mater. Chem. Phys.
114
,
687
(
2009
).
15.
K. A.
Gesheva
,
A.
Cziraki
,
T.
Ivanova
, and
A.
Szekeres
,
Thin Solid Films
515
,
4609
(
2007
).
16.
S. H.
Mohamed
and
S.
Venkataraj
,
Vacuum
81
,
636
(
2007
).
17.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol., A
29
,
050801
(
2011
).
18.
D. R.
Boris
,
V. D.
Wheeler
,
N.
Nepal
,
S. B.
Qadri
,
S. G.
Walton
, and
C. C. R.
Eddy
,
J. Vac. Sci. Technol., A
38
,
040801
(
2020
).
19.
T.
Dai
,
Y.
Ren
,
L.
Qian
, and
X.
Liu
,
J. Electron. Mater.
47
,
6709
(
2018
).
20.
T. H.
Kim
,
D. K.
Nandi
,
R.
Ramesh
,
S. M.
Han
,
B.
Shong
, and
S. H.
Kim
,
Chem. Mater.
31
,
8338
(
2019
).
21.
M.
Diskus
,
O.
Nilsen
, and
H.
Fjellvag
,
J. Mater. Chem.
21
,
705
(
2011
).
22.
M.
Diskus
,
O.
Nilsen
,
H.
Fjellvåg
,
S.
Diplas
,
P.
Beato
,
C.
Harvey
,
E. van S.
Lantman
, and
B. M.
Weckhuysen
,
J. Vac. Sci. Technol., A
30
,
01A107
(
2012
).
23.
D. K.
Nandi
and
S. K.
Sarkar
,
Appl. Mech. Mater.
492
,
375
(
2014
).
24.
A.
Bertuch
,
G.
Sundaram
,
M.
Saly
,
D.
Moser
, and
R.
Kanjolia
,
J. Vac. Sci. Technol., A
32
,
01A119
(
2014
).
25.
M. F. J.
Vos
,
B.
Macco
, and
N. F. W.
Thissen
,
J. Vac. Sci. Technol., A
34
,
01A103
(
2016
).
26.
C.
Lee C
and
M. A.
Lieberman
,
J. Vac. Sci. Technol., A
13
,
368
(
1995
).
27.
C. H. Y. S.
Cho
,
T. X.
Liu
, and
S. Y.
Lien
,
Surf. Coat. Technol.
320
,
293
(
2017
).
28.
S.
Karatas
and
A.
Türüt
,
Microelectron. Reliab.
50
,
351
(
2010
).
29.
F.
Werfel
and
E.
Minni
,
J. Phys. C: Solid State Phys.
16
,
6091
(
1983
).
30.
W. K.
Liu
,
S. M.
Mokler
,
N.
Ohtani
,
C.
Roberts
, and
B. A.
Joyce
,
Surf. Sci.
264
,
301
(
1992
).
31.
S.
Nayak
,
D. E.
Savage
,
H. N.
Chu
,
M. G.
Lagally
, and
T. F.
Kuech
,
J. Cryst. Growth
157
,
168
(
1995
).
32.
Y. H.
Joo
,
D. K.
Nandi
,
R.
Ramesh
,
Y.
Jang
,
J. S.
Bae
,
T.
Cheon
, and
S. H.
Kim
,
J. Alloys Compd.
858
,
158314
(
2020
).
33.
H. G.
Ang
,
K. S.
Chan
,
G. K.
Chuah
,
S.
Jaenicke
, and
S. K.
Neo
,
J. Chem. Soc. Dalton Trans.
23
,
3753
(
1995
).
34.
J.
Li
,
G.
Schreckenbach
, and
T.
Ziegler
,
J. Am. Chem. Soc.
117
,
486
(
1995
).
35.
J. G.
Song
 et al,
Nat. Commun.
6
,
1
(
2015
).
36.
A.
Szekeres
,
T.
Ivanova
, and
K.
Gesheva
,
J. Solid State Electrochem.
7
,
17
(
2002
).
37.
J. K.
Yao
 et al,
Surf. Eng.
25
,
257
(
2009
).
38.
I.
Pankove
,
Optical Processes in Semiconductors
(
Dover
,
New York
,
1971
), vol.
119
.
39.
H.
Mehmood
,
G.
Bektaş
,
İ
Yıldız
,
T.
Tauqeer
,
H.
Nasser
, and
R.
Turan
,
Mat. Sci. Semicon. Proc.
101
,
46
(
2019
).
41.
Z.
Hussain
,
J. Mater. Res.
16
,
2695
(
2001
).
42.
A. T.
Martín-Luengo
,
H.
Köstenbauer
,
J.
Winkler
, and
A.
Bonanni
,
AIP Adv.
7
,
15034
(
2017
).
43.
M.
Vasilopoulou
 et al,
J. Am. Chem. Soc.
134
,
16178
(
2012
).
44.
Y. L.
Leung
,
P. C.
Wong
,
M. Y.
Zhou
,
K. A. R.
Mitchell
, and
K. J.
Smith
,
Appl. Surf. Sci.
136
,
147
(
1998
).
45.
L.
Hongfei
,
R. B.
Yang
,
W. F.
Yang
,
Y. J.
Jin
, and
C. J. J.
Lee
,
Appl. Surf. Sci.
439
,
583
(
2018
).
46.
J. F.
Moulder
,
W. F.
Strickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy
(
Physical Electronics Inc.
,
Eden Praivie, MN
,
1995
).
47.
K.
Inzani
,
M.
Nematollahi
,
F.
Vullum-Bruer
,
T.
Grande
,
T. W.
Reenaas
, and
S. M.
Selbach
,
Phys. Chem. Chem. Phys.
19
,
9232
(
2017
).
48.
A. C.
Bose
,
Y.
Shimizu
,
D.
Mariotti
,
T.
Sasaki
,
K.
Terashima
, and
N.
Koshizaki
,
Nanotechnology
17
,
5976
(
2006
).
49.
H.
Xu
,
M. K.
Akbari
,
Z.
Hai
,
Z.
Wei
,
L.
Hyde
,
F.
Verpoort
,
C. Y.
Xue
, and
S.
Zhuiykov
,
Mater. Des.
149
,
135
(
2018
).
50.
M.
Mattinen
 et al,
Mater. Today Chem.
9
,
17
(
2018
).
51.
W. C.
Peng
,
Y. C.
Chen
,
J. L.
He
,
S. L.
Ou
,
R. H.
Horng
, and
D. S.
Wuu
,
Sci. Rep.
8
,
9255
(
2018
).
52.
T.
Kim
,
G.
Baek
,
S.
Yang
,
J. Y.
Yang
,
K. S.
Yoon
,
S. G.
Kim
,
J. Y.
Lee
,
H. S.
Im
, and
J. P.
Hong
,
Sci. Rep.
8
,
8532
(
2018
).
53.
S. Y.
Lien
,
Y. S.
Cho
,
C. H.
Hsu
,
K. Y.
Shen
,
S.
Zhang
, and
W. Y.
Wu
,
Surf. Coat. Technol.
359
,
247
(
2019
).
54.
A. J. M.
Mackus
,
S. B. S.
Heil
,
E.
Langereis
,
H. C. M.
Knoops
,
M. C. M.
Van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol., A
28
,
77
(
2010
).
55.
R.
Hippler
,
M.
Cada
,
V.
Stranak
, and
Z.
Hubicka
,
Plasma Sources Sci. Technol.
28
,
115020
(
2019
).
56.
Y. J.
Chang
,
C. H.
Lin
, and
C.
Huang
,
Jpn. J. Appl. Phys.
55
,
01AB05
(
2015
).
57.
K. N.
Pandiyaraj
 et al,
Appl. Surf. Sci.
488
,
343
(
2019
).
You do not currently have access to this content.