In this study, plasma-enhanced atomic layer deposited indium oxide (InOx) films were analyzed using a new [dimethylbutylamino]trimethylindium (DATI) liquid precursor and Ar/O2 plasma. The growth property using the DATI precursor, such as growth per cycle, is relatively higher (≥1.0 Å/cycle) than other precursors even in low deposition temperatures (100–250 °C). In addition, impurities (C and N) in the thin films were below the XPS detection limit. Because the number of oxygen vacancies that generate carriers in the InOx thin films increased with the deposition temperature, the carrier concentration (2.7 × 1018–1.4 × 1019 cm−3) and Hall mobility (0.3–1.1 cm2/V s) of the InOx thin film were increased. InOx channel based staggered bottom gate structure thin film transistors (TFTs) were fabricated, and their switching performance were studied. Because the InOx films were deposited with high purity, the electrical properties of TFTs show superior switching performance in terms of saturation mobility (17.5 cm2/V s) and Ion/Ioff ratio (2.9 × 109). Consequently, InOx films deposited with DATI have the potential to be widely used in indium oxide semiconductors, especially backplane TFTs.

1.
J.
Sheng
,
J.-H.
Lee
,
W.-H.
Choi
,
T.
Hong
,
M.
Kim
, and
J.-S.
Park
,
J. Vac. Sci. Technol. A
36
,
060801
(
2018
).
2.
S. H. K.
Park
 et al,
Adv. Mater.
21
,
678
(
2009
).
3.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
,
Sci. Technol. Adv. Mater.
11
,
044305
(
2010
).
4.
K. L.
Han
,
J. H.
Han
,
B. S.
Kim
,
H. J.
Jeong
,
J. M.
Choi
,
J. E.
Hwang
,
S.
Oh
, and
J. S.
Park
,
ACS Appl. Mater. Interfaces
12
,
3784
(
2020
).
5.
J.
Sheng
,
T.
Hong
,
D.
Kang
,
Y.
Yi
,
J. H.
Lim
, and
J. S.
Park
,
ACS Appl. Mater. Interfaces
11
,
12683
(
2019
).
6.
J.
Sheng
,
J.
Park
,
D.
Won Choi
,
J.
Lim
, and
J. S.
Park
,
ACS Appl. Mater. Interfaces
8
,
31136
(
2016
).
7.
M.
Kwoka
,
L.
Ottaviano
,
M.
Passacantando
,
S.
Santucci
,
G.
Czempik
, and
J.
Szuber
,
Thin Solid Films
490
,
36
(
2005
).
8.
H. Y.
Kim
,
J. H.
Nam
,
S. M.
George
,
J. S.
Park
,
B. K.
Park
,
G. H.
Kim
,
D. J.
Jeon
,
T. M.
Chung
, and
J. H.
Han
,
Ceram. Int.
45
,
5124
(
2019
).
9.
Y.
Wu
,
S. E.
Potts
,
P. M.
Hermkens
,
H. C. M.
Knoops
,
F.
Roozeboom
, and
W. M. M.
Kessels
,
Chem. Mater.
25
,
4619
(
2013
).
10.
M.
Purica
,
E.
Budianu
,
E.
Rusu
,
M.
Danila
, and
R.
Gavrila
,
Thin Solid Films
403
,
485
(
2002
).
11.
P.
Erhart
,
N.
Juslin
,
O.
Goy
,
K.
Nordlund
,
R.
Müller
, and
K.
Albe
,
J. Phys.: Condens. Matter
18
,
6585
(
2006
).
12.
G.
Jimenez-Cadena
,
E.
Comini
,
M.
Ferroni
,
A.
Vomiero
, and
G.
Sberveglieri
,
Mater. Chem. Phys.
124
,
694
(
2010
).
13.
E.
Guziewicz
 et al,
Semicond. Sci. Technol.
27
,
074011
(
2012
).
14.
H. Y.
Kim
 et al,
ACS Appl. Mater. Interfaces
8
,
26924
(
2016
).
15.
K.
Ide
,
K.
Nomura
,
H.
Hosono
, and
T.
Kamiya
,
Phys. Status Solidi A
216
,
1800372
(
2019
).
16.
C.
Klingshirn
,
Phys. Status Solidi B
244
,
3027
(
2007
).
17.
J. H.
Lim
,
H.-J.
Jeong
,
K.-T.
Oh
,
D.-H.
Kim
,
J. S.
Park
, and
J.-S.
Park
,
J. Alloys Compd.
762
,
881
(
2018
).
18.
M. N.
Mullings
,
C.
Hägglund
,
J. T.
Tanskanen
,
Y.
Yee
,
S.
Geyer
, and
S. F.
Bent
,
Thin Solid Films
556
,
186
(
2014
).
19.
W. J.
Maeng
and
J. S.
Park
,
J. Electroceram.
31
,
338
(
2013
).
20.
J. W.
Elam
,
A. B. F.
Martinson
,
M. J.
Pellin
, and
J. T.
Hupp
,
Chem. Mater.
18
,
3571
(
2006
).
21.
W. J.
Maeng
,
D. W.
Choi
,
J.
Park
, and
J. S.
Park
,
J. Alloys Compd.
649
,
216
(
2015
).
22.
R.
Kobayashi
,
T.
Nabatame
,
K.
Kurishima
,
T.
Onaya
,
A.
Ohi
,
N.
Ikeda
,
T.
Nagata
,
K.
Tsukagoshi
, and
A.
Ogura
,
ECS Trans.
92
,
3
(
2019
).
23.
J.
Sheng
,
T. H.
Hong
,
H. M.
Lee
,
K. R.
Kim
,
M.
Sasase
,
J.
Kim
,
H.
Hosono
, and
J. S.
Park
,
ACS Appl. Mater. Interfaces
11
,
40300
(
2019
).
24.
D.
Beena
,
K. J.
Lethy
,
R.
Vinodkumar
,
V. P.
Mahadevan Pillai
,
V.
Ganesan
,
D. M.
Phase
, and
S. K.
Sudheer
,
Appl. Surf. Sci.
255
,
8334
(
2009
).
25.
J. S.
Park
,
W. J.
Maeng
,
H. S.
Kim
, and
J. S.
Park
,
Thin Solid Films
520
,
1679
(
2012
).
26.
W. J.
Maeng
,
D. W.
Choi
,
K. B.
Chung
,
W.
Koh
,
G. Y.
Kim
,
S. Y.
Choi
, and
J. S.
Park
,
ACS Appl. Mater. Interfaces
6
,
17481
(
2014
).
27.
T.
Asikainen
,
M.
Ritala
, and
M.
Leskelä
,
J. Electrochem. Soc.
141
,
3210
(
1994
).
28.
O.
Nilsen
,
R.
Balasundaraprabhu
,
E. V.
Monakhov
,
N.
Muthukumarasamy
,
H.
Fjellvåg
, and
B. G.
Svensson
,
Thin Solid Films
517
,
6320
(
2009
).
29.
D. J.
Lee
,
J. Y.
Kwon
,
J.
Il Lee
, and
K. B.
Kim
,
J. Phys. Chem. C
115
,
15384
(
2011
).
30.
R. K.
Ramachandran
,
J.
Dendooven
,
H.
Poelman
, and
C.
Detavernier
,
J. Phys. Chem. C
119
,
11786
(
2015
).
31.
W. J.
Maeng
,
D.
Won Choi
,
J.
Park
, and
J. S.
Park
,
Ceram. Int.
41
,
10782
(
2015
).
32.
J.
Tauc
,
R.
Grigorovici
, and
A.
Vancu
,
Phys. Status Solidi B
15
,
627
(
1966
).
33.
F.
Mizutani
,
S.
Higashi
,
M.
Inoue
, and
T.
Nabatame
,
AIP Adv.
9
,
045019
(
2019
).
34.
A. V.
Naumkin
,
A. K.
Vass
,
S. W.
Gaarenstroom
, and
C. J.
Powell
,
NIST X-ray Photoelectron Spectroscopy Database, Version 4.1
(
National Institute of Standards and Technology
,
Gaithersburg
,
MD
,
2012
).
35.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
(
2004
).
36.
W.
Seiler
,
M.
Nistor
,
C.
Hebert
, and
J.
Perrière
,
Sol. Energy Mater. Sol. Cells
116
,
34
(
2013
).
37.
S. B.
Kim
,
A.
Jayaraman
,
D.
Chua
,
L. M.
Davis
,
S. L.
Zheng
,
X.
Zhao
,
S.
Lee
, and
R. G.
Gordon
,
Chem. Eur. J.
24
,
9525
(
2018
).
38.
A.
Klein
,
C.
Körber
,
A.
Wachau
,
F.
Säuberlich
,
Y.
Gassenbauer
,
S. P.
Harvey
,
D. E.
Proffit
, and
T. O.
Mason
,
Materials
3
,
4892
(
2010
).
39.
H. I.
Yeom
,
J. B.
Ko
,
G.
Mun
, and
S. H. K.
Park
,
J. Mater. Chem. C
4
,
6873
(
2016
).
40.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
41.
K.
Nomura
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Appl. Phys. Lett.
95
,
013502
(
2009
).
42.
S.
Mirzapour
,
S. M.
Rozati
,
M. G.
Takwale
,
B. R.
Marathe
, and
V. G.
Bhide
,
Mater. Lett.
13
,
275
(
1992
).
You do not currently have access to this content.