The need for advanced energy conversion and storage devices remains a critical challenge amid the growing worldwide demand for renewable energy. Metal fluoride thin films are of great interest for applications in lithium-ion and emerging rechargeable battery technologies, particularly for enhancing the stability of the electrode-electrolyte interface and thereby extending battery cyclability and lifetime. Reported within, sodium fluoride (NaF) thin films were synthesized via atomic layer deposition. NaF growth experiments were carried out at reactor temperatures between 175 and 250 °C using sodium tert-butoxide and HF-pyridine solution. The optimal deposition temperature range was 175–200 °C, and the resulting NaF films exhibited low roughness (Rq ≈ 1.6 nm for films of ∼8.5 nm), nearly stoichiometric composition (Na:F = 1:1.05) and a growth per cycle value of 0.85 Å/cycle on SiO2 substrates. These results are encouraging for future applications of NaF thin films in the development of improved energy capture and storage technologies.

1.
F.
Wu
,
J.
Maier
, and
Y.
Yu
,
Chem. Soc. Rev.
49
,
1569
(
2020
).
2.
M.
Walter
,
M. V.
Kovalenko
, and
K. V.
Kravchyk
,
New J. Chem.
44
,
1677
(
2020
).
3.
W.
Luo
,
F.
Shen
,
C.
Bommier
,
H.
Zhu
,
X.
Ji
, and
L.
Hu
,
Acc. Chem. Res.
49
,
231
(
2016
).
4.
X.
Pu
,
H.
Wang
,
D.
Zhao
,
H.
Yang
,
X.
Ai
,
S.
Cao
,
Z.
Chen
, and
Y.
Cao
,
Small
15
,
1805427
(
2019
).
5.
J.
Biemolt
,
P.
Jungbacker
,
T.
van Teijlingen
,
N.
Yan
, and
G.
Rothenberg
,
Materials
13
,
425
(
2020
).
6.
F.
Yu
,
L.
Du
,
G.
Zhang
,
F.
Su
,
W.
Wang
, and
S.
Sun
,
Adv. Funct. Mater.
30
,
1906890
(
2020
).
7.
D.
Zuo
,
G.
Tian
,
X.
Li
,
D.
Chen
, and
K.
Shu
,
J. Alloys Compd.
706
,
24
(
2017
).
8.
B.
Ahmed
,
C.
Xia
, and
H. N.
Alshareef
,
Nano Today
11
,
250
(
2016
).
9.
Y.
Zhao
,
K.
Zheng
, and
X.
Sun
,
Joule
2
,
2583
(
2018
).
10.
J.
Liu
,
H.
Zhu
, and
M. H. A.
Shiraz
,
Front. Energy Res.
6
,
10
(
2018
).
11.
L.
Ma
,
R. B.
Nuwayhid
,
T.
Wu
,
Y.
Lei
,
K.
Amine
, and
J.
Lu
,
Adv. Mater. Interfaces
3
,
1600564
(
2016
).
12.
T.
Kääriäinen
,
D.
Cameron
,
M. L.
Kääriäinen
, and
A.
Sherman
,
Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications
, 2nd ed. (
Scrivener Publishing
,
Beverly
,
MA
,
2013
).
13.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
14.
M.
Mäntymäki
,
M.
Ritala
, and
M.
Leskelä
,
Coatings
8
,
277
(
2018
).
15.
M.
Feinauer
,
H.
Euchner
,
M.
Fichtner
, and
M. A.
Reddy
,
ACS Appl. Energy Mater.
2
,
7196
(
2019
).
16.
Y.
Lee
,
H.
Sun
,
M. J.
Young
, and
S. M.
George
,
Chem. Mater.
28
,
2022
(
2016
).
17.
L.
Chen
 et al.,
ACS Appl. Mater. Interfaces
10
,
26972
(
2018
).
18.
I.
Hwang
,
S.-K.
Jung
,
E.-S.
Jeong
,
H.
Kim
,
S.-P.
Cho
,
K.
Ku
,
H.
Kim
,
W.-S.
Yoon
, and
K.
Kang
,
Nano Res.
10
,
4388
(
2017
).
19.
Z. W.
Seh
,
J.
Sun
,
Y.
Sun
, and
Y.
Cui
,
ACS Cent. Sci.
1
,
449
(
2015
).
20.
R.
Binions
,
C. J.
Carmalt
, and
I. P.
Parkin
,
Thin Solid Films
469-470
,
416
(
2004
).
21.
L. J.
Lingg
,
A. D.
Berry
,
A. P.
Purdy
, and
K. J.
Ewing
,
Thin Solid Films
209
,
9
(
1992
).
22.
J. A.
Samuels
,
W.-C.
Chiang
,
C.-P.
Yu
,
E.
Apen
,
D. C.
Smith
,
D. V.
Baxter
, and
K. G.
Caulton
,
Chem. Mater.
6
,
1684
(
1994
).
23.
C.
Andres
 et al.,
Solar Energy
175
,
94
(
2018
).
24.
25.
G.
Rajan
 et al.,
Thin Solid Films
690
,
137526
(
2019
).
26.
D.
Ledinek
,
J.
Keller
,
C.
Hägglund
,
W.-C.
Chen
, and
M.
Edoff
,
Thin Solid Films
683
,
156
(
2019
).
27.
H. H.
Sønsteby
,
O.
Nilsen
, and
H.
Fjellvåg
,
J. Vac. Sci. Technol. A
34
,
041508
(
2016
).
28.
H. H.
Sønsteby
,
O.
Nilsen
, and
H.
Fjellvåg
,
Global Challenges
3
,
1800114
(
2019
).
29.
E.
Østreng
,
H. H.
Sønsteby
,
S.
Øien
,
O.
Nilsen
, and
H.
Fjellvåg
,
Dalton Trans.
43
,
16666
(
2014
).
30.
H. H.
Sønsteby
,
J. E.
Bratvold
,
V. A. L. K.
Killi
,
D.
Choudhury
,
J. W.
Elam
,
H.
Fjellvåg
, and
O.
Nilsen
,
J. Vac. Sci. Technol. A
38
,
060804
(
2020
).
31.
J. W.
Elam
,
M. D.
Groner
, and
S. M.
George
,
Rev. Sci. Instrum.
73
,
2981
(
2002
).
32.
See supplementary material at http://dx.doi.org/10.1116/6.0000847 for additional QCM and XPS data, spectroscopic ellipsometry data, ambient AFM images, and SEM images.
33.
D.
Nečas
and
P.
Klapetek
,
Open Phys.
10
,
181
(
2012
).
34.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
35.
G.
Bergerhoff
,
I.
Brown
, and
F.
Allen
,
Crystallographic Databases
(
International Union of Crystallography
,
Chester
,
1987
)
,
Vol. 360, p.
77
, available at https://icsd.products.fiz-karlsruhe.de/.
36.
P.
Debye
and
P.
Scherrer
,
Phys. Z.
19
,
474
(
1918
).
37.
J. W.
Elam
,
Z. A.
Sechrist
, and
S. M.
George
,
Thin Solid Films
414
,
43
(
2002
).

Supplementary Material

You do not currently have access to this content.