Atomic layer deposition (ALD) processes for binary oxide (AOy or BOz) growth consist of a sequential introduction of metal precursor (precursor-A or precursor-B) and oxidant-O such that the respective surface reactions are self-limiting with respect to precursor and oxidant exposure times (tA or tB and tO). This approach has been further extended for ternary oxide AδB1−δOλ deposition with (i) super-cycle ALD method (where each super-cycle comprises of m-cycles of AOy ALD followed by n-cycles of BOz ALD), (ii) precursor co-dosing method (where precursor-A and precursor-B are simultaneously pulsed followed by an oxidant-O pulse), and (iii) 3-step ALD (where precursor-A, precursor-B, and oxidant-O are sequentially pulsed). In this Letter, we present a subsaturation pulse initiated 3-step process with ApBO… pulsing sequence for ternary oxide AδB1−δOλ deposition in showerhead ALD reactors. Here, the pulse-Ap reaction step is controlled in the subsaturation regime, while both pulse-B and pulse-O reaction steps are allowed to reach saturation as in a typical ALD. From kinetic simulations, we show that the chemisorbed –Ache surface coverage [Ache] could be controlled below its saturation limit [Ache]sat with exposure time tA and precursor impingement rate kAin in the pulse-Ap reaction step. Furthermore, with precursor transport model, we show that kAin could be varied with a better control using ampoule temperature TampA and precursor-A carrier gas flow FiA together than using TampA alone. As example, we report ZrpHfO… pulsed deposition of ZrxHf1−xO2 ternary oxide samples ZHO1–ZHO4 in a showerhead ALD reactor, and from quantitative XPS analysis, we show that the Zr-fraction (x) could be varied in the range of 0.094 ≤ x ≤ 0.159 with Zr-carrier gas flow FArZr.

1.
A.
Tarancón
and
N.
Pryds
,
Adv. Mater. Interfaces
6
,
1900990
(
2019
).
2.
W.
Li
,
J.
Shi
,
K. H. L.
Zhang
, and
J. L.
MacManus-Driscoll
,
Mater. Horiz.
7
,
2832
(
2020
).
3.
H.-U.
Habermeier
,
Mater. Today
10
,
34
(
2007
).
4.
T.
Muneshwar
,
M.
Miao
,
E. R.
Borujeny
, and
K.
Cadien
,
Handbook on Thin Film Deposition
(
Elsevier
,
Oxford
,
2018
), pp.
359
377
.
5.
Z.
Gao
and
P.
Banerjee
,
J. Vac. Sci. Technol. A
37
,
050802
(
2019
).
6.
M.
Coll
and
M.
Napari
,
APL Mater.
7
,
110901
(
2019
).
7.
H. H.
Sønsteby
,
E.
Skaar
,
ØS
Fjellvåg
,
J. E.
Bratvold
,
H.
Fjellvåg
, and
O.
Nilsen
,
Nat. Commun.
11
,
2872
(
2020
).
8.
T.
Muneshwar
and
K.
Cadien
,
J. Appl. Phys.
124
,
095302
(
2018
).
9.
T.
Muneshwar
and
K.
Cadien
,
J. Appl. Phys.
119
,
085306
(
2016
).
10.
X.-Z.
Wang
,
T. P.
Muneshwar
,
H.-Q.
Fan
,
K.
Cadien
, and
J.-L.
Luo
,
J. Power Sources
397
,
32
(
2018
).
11.
A. I.
Abdulagatov
,
R. R.
Amashaev
,
Kr.N.
Ashurbekova
,
K. N.
Ashurbekova
,
M.
Kh. Rabadanov
, and
I. M.
Abdulagatov
,
Russ. J. Gen. Chem.
88
,
1699
(
2018
).
12.
A. J. M.
Mackus
,
J. R.
Schneider
,
C.
MacIsaac
,
J. G.
Baker
, and
S. F.
Bent
,
Chem. Mater.
31
,
1142
(
2019
).
13.
R. B.
Nuwayhid
,
A.
Jarry
,
G. W.
Rubloff
, and
K. E.
Gregorczyk
,
ACS Appl. Mater. Interfaces
12
,
21641
(
2020
).
14.
P. K.
Parashar
,
S. A.
Kinnunen
,
T.
Sajavaara
,
J. J.
Toppari
, and
V. K.
Komarala
,
Sol. Energy Mater. Sol. Cells
193
,
231
(
2019
).
15.
S.
Spiga
 et al,
J. Appl. Phys.
112
,
014107
(
2012
).
16.
G.
Dingemans
,
A.
Clark
,
J. A.
van Delft
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
109
,
113107
(
2011
).
17.
S.
Consiglio
,
K.
Tapily
,
R. D.
Clark
,
G.
Nakamura
,
C. S.
Wajda
, and
G. J.
Leusink
,
J. Vac. Sci. Technol. A
31
,
01A115
(
2013
).
18.
H.
Yuan
,
B.
Luo
,
D.
Yu
,
A.
Cheng
,
S. A.
Campbell
, and
W. L.
Gladfelter
,
J. Vac. Sci. Technol. A
30
,
01A138
(
2012
).
19.
A.
Illiberi
,
R.
Scherpenborg
,
Y.
Wu
,
F.
Roozeboom
, and
P.
Poodt
,
ACS Appl. Mater. Interfaces
5
,
13124
(
2013
).
20.
K.
Kukli
 et al,
AIP Adv.
7
,
025001
(
2017
).
21.
T.
Arroval
,
L.
Aarik
,
R.
Rammula
, and
J.
Aarik
,
Thin Solid Films
591
,
276
(
2015
).
22.
Y.-T.
Liu
,
C.-S.
Ku
,
S.-J.
Chiu
,
H.-Y.
Lee
, and
S.-Y.
Chen
,
ACS Appl. Mater. Interfaces
6
,
443
(
2014
).
23.
R.
Alcala
,
C.
Richter
,
M.
Materano
,
P. D.
Lomenzo
,
C.
Zhou
,
J. L.
Jones
,
T.
Mikolajick
, and
U.
Schroeder
,
J. Phys. Appl. Phys.
54
,
035102
(
2020
).
24.
C.
Wu
,
H.
Ye
,
N.
Shaju
,
J.
Smith
,
B.
Grisafe
,
S.
Datta
, and
P.
Fay
,
IEEE Electron Device Lett.
41
,
337
(
2020
).
25.
S.
Riedel
,
P.
Polakowski
, and
J.
Müller
,
AIP Adv.
6
,
095123
(
2016
).
26.
C.
Wu
,
H.
Ye
,
B.
Grisafe
,
S.
Datta
, and
P.
Fay
,
Phys. Status Solidi A
217
,
1900717
(
2020
).
27.
M. H.
Park
 et al,
Appl. Phys. Rev.
6
,
041403
(
2019
).
28.
B. Y.
Kim
,
B. S.
Kim
,
S. D.
Hyun
,
H. H.
Kim
,
Y. B.
Lee
,
H. W.
Park
,
M. H.
Park
, and
C. S.
Hwang
,
Appl. Phys. Lett.
117
,
022902
(
2020
).
29.
See supplementary material at http://dx.doi.org/10.1116/6.0000856 for (SI) simulation algorithm with examples. (SII) Schematic of precursor transport and ALD reactor; (SIII) additional experiment data (n.d.).
30.
T.
Muneshwar
and
K.
Cadien
,
J. Vac. Sci. Technol. A
33
,
031502
(
2015
).
31.
Y. R.
Ryu
 et al,
Appl. Phys. Lett.
88
,
052103
(
2006
).
32.
S.
Canulescu
 et al,
Appl. Phys. Lett.
109
,
091902
(
2016
).

Supplementary Material

You do not currently have access to this content.