One of the major challenges in β-Ga2O3-based high power and high frequency devices is anticipated to be related to the low thermal conductivity of the material which is on the order of 10–30 W/m K. The use of diamond (thermal conductivity ∼2000 W/m K) as a substrate can be one effective approach for achieving better thermal management in β-Ga2O3-based devices. In this work, low pressure chemical vapor deposition was used to grow β-Ga2O3 films on (100) oriented, single-crystalline diamond substrates. A two-step growth technique was employed to avoid the oxidation of the diamond surface at high temperatures. From x-ray diffraction measurements, the β-Ga2O3 films grew along the 201 crystalline axis with the β-Ga2O3 (002) planes rotated by ±24.3–27° with respect to the diamond (111) planes. High-magnification scanning transmission electron microscopy imaging revealed an abrupt β-Ga2O3/diamond interface without any voids which is essential for the high rate of heat transfer across the interface. N-type electrical conductivity was measured in a Si-doped β-Ga2O3 film with 1.4 × 1019 cm−3 electron concentration and ∼3 cm2/V s electron mobility. This work demonstrates the feasibility of heteroepitaxy of β-Ga2O3 films on diamond substrates for potential device design and device fabrication with efficient thermal management.

1.
M.
Higashiwaki
and
G. H.
Jessen
,
Appl. Phys. Lett.
112
,
060401
(
2018
).
2.
C.
Joishi
,
S.
Rafique
,
Z.
Xia
,
L.
Han
,
S.
Krishnamoorthy
,
Y.
Zhang
,
S.
Lodha
,
H.
Zhao
, and
S.
Rajan
,
Appl. Phys. Express
11
,
031101
(
2018
).
3.
S.
Rafique
,
L.
Han
, and
H.
Zhao
,
Phys. Status Solidi A
214
,
1700063
(
2017
).
4.
M.
Higashiwaki
,
H.
Murakami
,
Y.
Kumagai
, and
A.
Kuramata
,
Jpn. J. Appl. Phys.
55
,
1202A1
(
2016
).
5.
A.
El-Helou
,
Y.
Cui
,
M. J.
Tadjer
,
T. J.
Anderson
,
D.
Francis
,
T.
Feygelson
,
B.
Pate
,
K. D.
Hobart
, and
P. E.
Raad
,
Semicond. Sci. Technol.
36
,
014008
(
2020
).
6.
A.
El-Helou
,
P.
Komarov
,
M. J.
Tadjer
,
T. J.
Anderson
,
D. A.
Francis
,
T.
Feygelson
,
B. B.
Pate
,
K. D.
Hobart
, and
P. E.
Raad
,
IEEE Trans. Electron Devices
67
,
5415
(
2020
).
7.
M. J.
Tadjer
 et al,
IEEE Electron Device Lett.
40
,
881
(
2019
).
8.
M. J.
Tadjer
 et al,
IEEE Electron Device Lett.
33
,
23
(
2012
).
9.
J.
Noh
,
M.
Si
,
H.
Zhou
,
M. J.
Tadjer
, and
D. Y.
Peide
, in
76th Device Research Conference (DRC)
(
IEEE
,
New York
,
2018
), pp.
1
2
.
10.
J.
Noh
 et al,
IEEE J. Electron Devices Soc.
7
,
914
(
2019
).
11.
M. J.
Tadjer
,
J.
Noh
,
J. C.
Culbertson
,
S.
Alajlouni
,
M.
Si
,
H.
Zhou
,
A.
Shakouri
, and
P. D.
Ye
,
Electrochem. Soc.
26
,
1270
(
2019
).
12.
Z.
Cheng
,
L.
Yates
,
J.
Shi
,
M. J.
Tadjer
,
K. D.
Hobart
, and
S.
Graham
,
Appl. Phys. Lett. Mater.
7
,
031118
(
2019
).
13.
Z.
Cheng
,
V. D.
Wheeler
,
T.
Bai
,
J.
Shi
,
M. J.
Tadjer
,
T.
Feygelson
,
K. D.
Hobart
,
M. S.
Goorsky
, and
S.
Graham
,
Appl. Phys. Lett.
116
,
062105
(
2020
).
14.
S.
Rafique
,
L.
Han
,
M. J.
Tadjer
,
J. A.
Freitas
, Jr.
,
N. A.
Mahadik
, and
H.
Zhao
,
Appl. Phys. Lett.
108
,
182105
(
2016
).
15.
S.
Rafique
,
M. R.
Karim
,
J. M.
Johnson
,
J.
Hwang
, and
H.
Zhao
,
Appl. Phys. Lett.
112
,
052104
(
2018
).
16.
S.
Rafique
,
L.
Han
, and
H.
Zhao
,
Phys. Status Solidi A
213
,
1002
(
2016
).
17.
S.
Rafique
,
L.
Han
,
A. T.
Neal
,
S.
Mou
,
M. J.
Tadjer
,
R. H.
French
, and
H.
Zhao
,
Appl. Phys. Lett.
109
,
132103
(
2016
).
18.
M. J.
Tadjer
 et al,
J. Electron. Mater.
45
,
2031
(
2016
).
19.
N.
Nepal
 et al,
J. Vac. Sci. Technol. A
38
,
063406
(
2020
).
20.
S.
Rafique
,
L.
Han
,
A. T.
Neal
,
S.
Mou
,
J.
Boeckl
, and
H.
Zhao
,
Phys. Status Solidi A
215
,
1700467
(
2017
).
21.
Y.
Zhang
,
Z.
Feng
,
M. R.
Karim
, and
H.
Zhao
,
J. Vac. Sci. Technol. A
38
,
050806
(
2020
).
22.
Z.
Feng
,
M. R.
Karim
, and
H.
Zhao
,
Appl. Phys. Lett. Mater.
7
,
022514
(
2019
).
23.
P.
John
,
N.
Polwart
,
C. E.
Troupe
, and
J. E.
Wilson
,
Diam. Relat. Mater.
11
,
861
(
2002
).
24.
B.
Zhao
,
H.
Yang
,
G.
Du
,
X.
Fang
,
D.
Liu
,
C.
Gao
,
X.
Liu
, and
B.
Xie
,
Semicond. Sci. Technol.
19
,
770
(
2004
).
25.
S.
Nakagomi
and
Y.
Kokubunm
,
J. Cryst. Growth
349
,
12
(
2012
).
26.
M.
Ohring
,
Materials Science of Thin Films
(
Academic
,
Cambridge
,
MA
,
2002
).
27.
P.
Vogt
and
O.
Bierwagen
,
Appl. Phys. Lett.
106
,
081910
(
2015
).
28.
M.
Grundmann
,
Phys. Status Solidi B
248
,
805
(
2011
).
29.
Y.
Zhang
,
C.
McAleese
,
H.
Xiu
,
C. J.
Humphreys
,
R. R.
Lieten
,
B.
Degroote
, and
G.
Borghs
,
Appl. Phys. Lett.
91
,
092125
(
2007
).
30.
H.
Gao
 et al,
Appl. Phys. Lett.
112
,
242102
(
2018
).
You do not currently have access to this content.