High-temperature β-Ga2O3:Cr2O3-based sensors sensitive to oxygen- and hydrogen-containing gases have been developed and studied. Magnetron cosputtering is the method of choice for the thin film synthesis as an industry-compatible technique. The composition-structure-properties relationship has been revealed. An introduction of 0.04–0.14 wt. % Cr leads to a significant increase in the response of the O2 sensors over the temperature range 250–400 °C. The highest response in the above-mentioned temperature range has been achieved for a Cr addition of 0.14 wt. %. An increase in the Cr content from 0.04 to 0.22 wt. % leads to a decrease in the β-Ga2O3-based sensors’ response time, especially for low O2 concentrations (≤10 vol. %). Reliable control of the β-Ga2O3:Cr2O3-based sensors’ selectivity to industry-relevant reducing gases—hydrogen, carbon monoxide, and toluene—is demonstrated. β-Ga2O3 films with a Cr incorporation content of 0.04 and 0.06 wt. % have a high response to toluene at operating temperatures 300–500 °C, while the films with 0.14 and 0.22 wt. % Cr have a high response to H2 in the range 400–500 °C. Regardless of the Cr content in β-Ga2O3 thin films, all sensors considered demonstrate a weak response to CO within the operating temperature range 250–500 °C. The results attained are of certain technological importance, i.e., in terms of the development of cost-effective methods for the synthesis of materials and systems for monitoring and control of industry-relevant gases for an environmentally friendly and sustainable growth.

1.
S. I.
Stepanov
,
V. I.
Nikolaev
,
V. E.
Bougrov
, and
A. E.
Romanov
,
Rev. Adv. Mater. Sci.
44
,
63
(
2016
).
2.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
3.
V. M.
Kalygina
,
A. V.
Almaev
,
V. A.
Novikov
, and
Y. S.
Petrova
,
Semiconductors
54
,
682
(
2020
).
4.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
E. B.
Yakimov
,
S. J.
Pearton
,
F.
Ren
,
A. V.
Chernykh
,
D.
Gogova
, and
A. I.
Kochkova
,
ECS J. Solid State Sci. Technol.
8
,
Q3019
(
2019
).
5.
A. V.
Kremleva
,
D. A.
Kirilenko
,
V. I.
Nikolaev
,
A. I.
Pechnikov
,
S. L.
Stepanov
,
M. A.
Odnoblyudov
,
V. E.
Bougrov
, and
A. E.
Romanov
,
Mater. Phys. Mech.
32
,
178
(
2017
).
6.
V. I.
Nikolaev
,
V.
Maslov
,
S. I.
Stepanov
,
A. I.
Pechnikov
,
V.
Krymov
,
I. P.
Nikitina
,
L. I.
Guzilova
,
V. E.
Bougrov
, and
A. E.
Romanov
,
J. Cryst. Growth
457
,
132
(
2017
).
7.
D. A.
Zatsepin
,
D. W.
Boukhvalov
,
A. F.
Zatsepin
,
Yu. A.
Kuznetsova
,
D.
Gogova
,
V. Ya.
Shur
, and
A. A.
Esin
,
Superlattices Microstruct.
120
,
90
(
2018
).
8.
D.
Gogova
,
M.
Schmidbauer
, and
A.
Kwasniewski
,
Cryst. Eng. Comm.
17
,
6744
(
2015
).
9.
A.
Afzal
,
J. Materiomics
5
,
542
(
2019
).
10.
S.
Jang
,
S.
Jung
,
J.
Kim
,
F.
Ren
,
S. J.
Pearton
, and
K. H.
Baik
,
ESC J. Solid State Sci. Technol.
7
,
Q3180
(
2018
).
11.
S.
Nakagomi
,
K.
Yokoyama
, and
Y.
Kokubun
,
J. Sens. Sens. Syst.
3
,
231
(
2014
).
12.
M.
Ogita
,
S.
Yuasa
,
K.
Kobayashi
,
Y.
Yamada
,
Y.
Nakanishi
, and
Y.
Hatanaka
,
Appl. Surf. Sci.
212–213
,
397
(
2003
).
13.
M.
Bartic
,
M.
Ogita
,
M.
Isai
,
C.-L.
Baban
, and
H.
Suzuki
,
J. Appl. Phys.
102
,
023709
(
2007
).
14.
M.
Bartic
,
Y.
Toyoda
,
C.-L.
Baban
, and
M.
Ogita
,
Jpn. J. Appl. Phys.
45
,
5186
(
2006
).
15.
M.
Bartic
,
Y.
Toyoda
, and
M.
Ogita
,
Thin Solid Films
484
,
369
(
2005
).
16.
S.
Jung
,
S.
Jang
, and
K. H.
Baik
,
Ga2O3-Based Gas Sensors
(
Elsevier Inc.
,
Amsterdam
,
2019
).
17.
T.
Weh
,
M.
Fleischer
, and
H.
Meixner
,
Sens. Actuators B
68
,
146
(
1999
).
18.
T.
Schwebel
,
M.
Fleischer
,
H.
Meixner
, and
C.-D.
Kohl
,
Sens. Actuators B
49
,
46
(
1998
).
19.
J.
Frank
,
M.
Fleischer
,
H.
Meixner
, and
A.
Feltz
,
Sens. Actuators B
49
,
110
(
1998
).
20.
J.
Frank
,
M.
Fleischer
, and
H.
Meixner
,
Sens. Actuators B
34
,
373
(
1996
).
21.
T.
Schwebel
,
M.
Fleischer
, and
H.
Meixner
,
Sens. Actuators B
65
,
176
(
2000
).
22.
Z.
Liu
,
T.
Yamazaki
,
Y.
Shen
,
T.
Kikuta
,
N.
Nakatani
, and
Y.
Li
,
Sens. Actuators B
129
,
666
(
2008
).
23.
N. D.
Cuong
,
Y. W.
Park
, and
S. G.
Yoon
,
Sens. Actuators B
140
,
240
(
2009
).
24.
H.
Kim
,
C.
Jin
,
S.
An
, and
C.
Lee
,
Ceram. Int.
38
,
3563
(
2012
).
25.
S. P.
Arnold
,
S. M.
Prokes
,
F. K.
Perkins
, and
M. E.
Zaghloul
,
Appl. Phys. Lett.
95
,
103102
(
2009
).
26.
Y.
Li
,
A.
Trinchi
,
W.
Wlodarski
,
K.
Galatsis
, and
K.
Kalantar-zadeh
,
Sens. Actuators B
93
,
431
(
2003
).
27.
R.
Pandeeswari
and
B. G.
Jeyaprakash
,
Sens. Actuators B
195
,
206
(
2014
).
28.
S.
Manandhar
,
A. K.
Battu
,
A.
Devaraj
,
V.
Shutthanandan
,
S.
Thevuthasan
, and
C. V.
Ramana
,
Sci. Rep.
10
,
178
(
2020
).
29.
M. R.
Mohammadi
and
D. J.
Fray
,
Acta Mater.
55
,
4455
(
2007
).
30.
M.
Bagheri
,
A. A.
Khodadadi
,
A. R.
Mahjoub
, and
Y.
Mortazavi
,
Sens. Actuators B
220
,
590
(
2015
).
31.
V.
Balasubramani
,
A.
Nowshath Ahamed
,
S.
Chandraleka
,
K.
Krishna Kumar
,
M. R.
Kuppusamy
, and
T. M.
Sridhar
,
ECS J. Solid State Sci. Technol.
9
,
055009
(
2020
).
32.
A. V.
Almaev
,
E. V.
Chernikov
,
N. A.
Davletkildeev
, and
D. V.
Sokolov
,
Superlattices Microstruct.
139
,
106392
(
2020
).
33.
A. K.
Saikumar
,
S. D.
Nehate
, and
K. B.
Sundaram
,
ECS J. Solid State Sci. Technol.
8
,
Q3064
(
2019
).
34.
T. Z.
Lygdenova
,
V. M.
Kalygina
,
V. A.
Novikov
,
I. A.
Prudaev
,
O. P.
Tolbanov
, and
A. V.
Tyazhev
,
Russ. Phys. J.
60
,
1911
(
2018
).
35.
V.
Brynzari
,
G.
Korotchenkov
, and
S.
Dmitriev
,
Sens. Actuators B
61
,
143
(
1999
).
36.
O. V.
Anisimov
,
N. K.
Maksimova
,
E. Y.
Sevast’yanov
,
E. V.
Chernikov
,
V. I.
Gaman
,
Y. P.
Najden
,
V. A.
Novikov
, and
F. V.
Rudov
,
Semiconductors
44
,
366
(
2010
).
37.
V. V.
Kissine
,
V. V.
Sysoev
,
S. A.
Voroshilov
, and
V. V.
Simakov
,
Semiconductors
34
,
314
(
2000
).
38.
M. N.
Rumyantseva
,
E. A.
Makeeva
, and
A. M.
Gas’kov
,
Russ. J. General Chem.
78
,
2556
(
2008
).
39.
M.
Fleischer
,
J.
Giber
, and
H.
Meixner
,
Appl. Phys. A.
54
,
560
(
1992
).
40.
G.
Korotcenkov
and
B. K.
Cho
,
Sens. Actuators B
156
,
527
(
2011
).
41.
N. K.
Maksimova
,
А. V.
Аlmaev
,
Е. Y.
Sevast’yanov
,
A. I.
Potekaev
,
E. V.
Chernikov
,
N. V.
Sergeichenko
,
P. M.
Korusenko
, and
S. N.
Nesov
,
Coatings
9
,
423
(
2019
).
42.
M.
Kiss
,
O. H.
Krafsik
,
K.
Kovács
,
V. K.
Josepovits
,
M.
Fleischer
,
H.
Meixner
,
P.
Deák
, and
F.
Réti
,
Thin Solid Films
391
,
239
(
2001
).
43.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
97
,
142106
(
2010
).
44.
T. C.
Lovejoy
 et al,
J. Appl. Phys.
111
,
123716
(
2012
).
45.
A.
Luchechko
,
V.
Vasyltsiv
,
L.
Kostyk
,
O.
Tsvetkova
, and
B.
Pavlyk
,
ECS J. Solid State Sci. Technol.
9
,
045008
(
2020
).
46.
M.
Fleischer
and
H.
Meixner
,
J. Appl. Phys.
74
,
300
(
1993
).
47.
N. P.
Zaretskiy
,
L. I.
Menshikov
, and
A. A.
Vasiliev
,
Sens. Actuators B
170
,
148
(
2012
).
48.
A.
Gurlo
,
Chem. Phys. Chem.
7
,
2041
(
2006
).
49.
S. D.
Yim
,
K.-H.
Chang
, and
I.-S.
Nam
,
Stud. Surf. Sci. Catalyst
139
,
173
(
2001
).
50.
S. R.
Dyne
,
J. B.
Butt
, and
G. L.
Haller
,
J. Catal.
25
,
378
(
1972
).
51.
V. E.
Ostrovskii
,
Yu. A.
Agafonov
,
B. V.
Gostev
,
E. A.
Kadyshevich
, and
A. L.
Lapidus
,
Solid Fuel Chem.
44
,
275
(
2010
).
52.
N.
Kohli
,
O.
Singh
, and
R. C.
Singh
,
Sens. Actuators B
158
,
259
(
2011
).
53.
H.
Liu
,
X.
Du
,
X.
Xing
,
G.
Wang
, and
Z.
Qiao
,
Chem. Commun.
48
,
865
(
2012
).
54.
J.-H.
Kim
,
J.-H.
Lee
,
Y.
Park
,
J.-Y.
Kim
,
A.
Mirzaei
,
H. W.
Kim
, and
S. S.
Kim
,
Sens. Actuators B
294
,
78
(
2019
).
55.
J.
Tian
,
J.
Wang
,
Y.
Hao
,
H.
Du
, and
X.
Li
,
Sens. Actuators B
202
,
795
(
2014
).
You do not currently have access to this content.