The determination of the recombination coefficients of gases on solid surfaces depends on the plasma processing environment including factors such as temperature, surface morphology, impurities, and chamber geometry that play a role in energy transfer mechanisms of association, dissociation, and collisional nature of gases in low pressure plasmas. To determine those recombination coefficients, a zero-dimensional plasma model was created to predict radical and ion densities of hydrogen, oxygen, and nitrogen using experimental data, with electron temperatures and densities as inputs. The model inputs (electron density, electron temperature, and plasma gas temperature) were experimentally obtained by a Langmuir probe and a thermocouple. Each radical density measurement requires two radical probes with different catalytic coatings, which yield different temperatures due to different recombination coefficients of the coatings. The measurements are compared with the radical density obtained from a plasma model in order to determine the value of recombination coefficient. Recombination coefficient of hydrogen radicals on the gold surface is found to be 0.115 ± 0.018. Recombination coefficients of oxygen and nitrogen on copper are found to be 0.31 ± 0.063 and 0.18 ± 0.034, respectively. Ion densities vary from 109 to 1011 cm−3 s, over 10–100 mTorr pressure range and power range between 300 and 900 W. Radical densities are in the order of 1013 cm−3 to 1015 cm−3. Simultaneously with this article, a parallel study is published explaining in situ measurements of the radical probe system for single and mixed gases.

1.
D.
Qerimi
,
I.
Shchelkanov
,
G.
Panici
,
A.
Jain
,
J.
Wagner
, and
D. N.
Ruzic
, “Radical probe system for in-situ measurements of radical densities of hydrogen, oxygen and nitrogen,”
J. Vac. Sci. Technol. A
39
,
023003
(
2021
).
2.
M. S.
Barnes
,
J. C.
Forster
, and
J. H.
Keller
,
Appl. Phys. Lett.
62
,
2622
(
1993
).
3.
J. H.
Keller
,
J. C.
Forster
, and
M. S.
Barnes
,
J. Vac. Sci. Technol. A
11
,
2487
(
1993
).
4.
A.
Schwabedissen
,
E. C.
Benck
, and
J. R.
Roberts
,
Phys. Rev. E
55
,
3450
(
1997
).
5.
M.
Tuszewski
,
J. Appl. Phys.
79
,
8967
(
1996
).
6.
M.
Tuszewski
,
J. T.
Scheuer
, and
J. A.
Tobin
,
J. Vac. Sci. Technol. A
13
,
839
(
1995
).
7.
J. T.
Gudmundsson
,
A. M.
Marakhtanov
,
K. K.
Patel
,
V. P.
Gopinath
, and
M. A.
Lieberman
,
J. Phys. D: Appl. Phys.
33
,
1323
(
2000
).
8.
C.
Lee
,
D. B.
Graves
,
M. A.
Lieberman
, and
D. W.
Hess
,
J. Electrochem. Soc.
141
,
1546
(
1994
).
9.
S.
Ashida
,
C.
Lee
, and
M. A.
Lieberman
,
J. Vac. Sci. Technol. A
13
,
2498
(
1995
).
10.
J. T.
Gudmundsson
,
T.
Kimura
, and
M. A.
Lieberman
,
Plasma Sources Sci. Technol.
8
,
22
(
1999
).
11.
P. N.
Wainman
,
M. A.
Lieberman
,
A. J.
Lichtenberg
,
R. A.
Stewart
, and
C.
Lee
,
J. Vac. Sci. Technol. A
13
,
2464
(
1995
).
12.
D.
Benyoucef
and
M.
Yousfi
,
Phys. Plasmas
22
,
013510
(
2015
).
13.
S.
Bockel
,
J.
Amorim
,
G.
Baravian
,
A.
Ricard
, and
P.
Stratil
,
Plasma Sources Sci. Technol.
5
,
567
(
1996
).
14.
J.
Amorin
,
G.
Baravian
,
S.
Bockel
,
A.
Ricard
, and
G.
Sultan
,
J. Phys. III France
6
,
1147
(
1996
).
15.
J.
Amorim
,
G.
Baravian
, and
G.
Sultan
,
Appl. Phys. Lett.
68
,
1915
(
1996
).
16.
B.
Gordiets
,
C. M.
Ferreira
,
M. J.
Pinheiro
, and
A.
Ricard
,
Plasma Sources Sci. Technol.
7
,
379
(
1998
).
17.
E.
Carrasco
,
M.
Jiménez-Redondo
,
I.
Tanarro
, and
V. J.
Herrero
,
Phys. Chem. Chem. Phys.
13
,
19561
(
2011
).
18.
E. G.
Thorsteinsson
and
J. T.
Gudmundsson
,
Plasma Sources Sci. Technol.
18
,
045001
(
2009
).
19.
T.
Body
,
S.
Cousens
,
J.
Kirby
, and
C.
Corr
,
Plasma Phys. Control. Fusion
60
,
075011
(
2018
).
20.
A. T.
Hjartarson
,
E. G.
Thorsteinsson
, and
J. T.
Gudmundsson
,
Plasma Sources Sci. Technol.
19
,
065008
(
2010
).
21.
C. M.
Samuell
and
C. S.
Corr
,
Plasma Sources Sci. Technol.
25
,
015014
(
2016
).
22.
H.
Tawara
,
Y.
Itikawa
,
H.
Nishimura
, and
M.
Yoshino
,
J. Phys. Chem. Ref. Data
19
,
617
(
1990
).
23.
A. V.
Phelps
,
J. Phys. Chem. Ref. Data
19
,
653
(
1990
).
24.
R.
Celiberto
,
R. K.
Janev
,
A.
Laricchiuta
,
M.
Capitelli
,
J. M.
Wadehra
, and
D. E.
Atems
,
At. Data Nucl. Data Tables
77
,
161
(
2001
).
25.
R.
Celiberto
,
M.
Capitelli
,
M.
Capitelli
, and
A.
Laricchiuta
,
Phys. Scr.
2002
,
32
.
26.
27.
M.
Capitelli
,
R.
Celiberto
,
F.
Esposito
,
A.
Laricchiuta
,
K.
Hassouni
, and
S.
Longo
,
Plasma Sources Sci. Technol.
11
,
A7
(
2002
).
28.
I.
Méndez
,
F. J.
Gordillo-Vázquez
,
V. J.
Herrero
, and
I.
Tanarro
,
J. Phys. Chem. A
110
,
6060
(
2006
).
29.
B. J.
Wood
and
H.
Wise
,
J. Phys. Chem.
65
,
1976
(
1961
).
30.
J.-G.
Chang
,
Chin. J. Phys.
24
,
145
(
1986
).
31.
H.
Singh
,
J. W.
Coburn
, and
D. B.
Graves
,
J. Appl. Phys.
88
,
3748
(
2000
).
32.
M.
Mozetič
and
A.
Zalar
,
Appl. Surf. Sci.
158
,
263
(
2000
).
33.
K. E.
Shuler
and
K. J.
Laidler
,
J. Chem. Phys.
17
,
1212
(
1949
).
34.
F.
Paneth
and
K.
Herzfeld
,
Z. Elektrochem. Angew. Phys. Chem.
37
,
577
(
1931
).
35.
U.
Cvelbar
,
M.
Mozetič
,
I.
Poberaj
,
D.
Babič
, and
A.
Ricard
,
Thin Solid Films
475
,
12
(
2005
).
36.
C.
Lee
,
K.
Luther
,
K.
Oum
, and
J.
Troe
,
J. Phys. Chem. A
110
,
2613
(
2006
).
37.
A.
Bogaerts
,
M.
Eckert
,
M.
Mao
, and
E.
Neyts
,
J. Phys. D: Appl. Phys.
44
,
174030
(
2011
).
38.
S.
Kim
,
M. A.
Lieberman
,
A. J.
Lichtenberg
, and
J. T.
Gudmundsson
,
J. Vac. Sci. Technol. A
24
,
2025
(
2006
).
39.
E.
Despiau-Pujo
,
M.
Brihoum
,
P.
Bodart
,
M.
Darnon
, and
G.
Cunge
,
J. Phys. D: Appl. Phys.
47
,
455201
(
2014
).
40.
D. T.
Elg
,
G. A.
Panici
,
S.
Liu
,
G.
Girolami
,
S. N.
Srivastava
, and
D. N.
Ruzic
,
Plasma Chem. Plasma Process.
38
,
223
(
2018
).
41.
R. K.
Janev
,
D.
Reiter
, and
U.
Samm
,
Collision Processes in Low-Temperature Hydrogen Plasmas
(Jülich,
Germany
,
2003
), p.
190
.
42.
J. T.
Guðmundsson
,
A Critical Review of the Reaction Set for a Low Pressure Oxygen Processing Discharge
(
Science Institute, University of Iceland
, Reykjavik,
2004
).
43.
M. L.
Rahman
and
J. W.
Linnett
,
Trans. Faraday Soc.
67
,
183
(
1971
).
44.
C. O.
Laux
,
L.
Pierrot
, and
R. J.
Gessman
,
Chem. Phys.
398
,
46
(
2012
).
46.
47.
P.
Cauquot
,
S.
Cavadias
, and
J.
Amouroux
,
J. Thermophys. Heat Transfer
12
,
206
(
1998
).
48.
J.-P.
Sarrette
,
B.
Rouffet
, and
A.
Ricard
,
Plasma Process. Polym.
3
,
120
(
2006
).
49.
G. A.
Melin
and
R. J.
Madix
,
Trans. Faraday Soc.
67
,
2711
(
1971
).
50.
W. A.
Hardy
and
J. W.
Linnett
,
Symp. (Int.) Combust.
11
,
167
(
1967
).
51.
R. A.
Young
,
J. Chem. Phys.
34
,
1295
(
1961
).
52.
G.
Park
,
J. Spacecr. Rockets
50
,
540
(
2013
).
53.
G. G.
Mannella
,
Chem. Rev.
63
,
1
(
1963
).
54.
N.
Škoro
,
N.
Puač
,
S.
Lazović
,
U.
Cvelbar
,
G.
Kokkoris
, and
E.
Gogolides
,
J. Phys. D: Appl. Phys.
46
,
475206
(
2013
).
55.
G.
Herdrich
,
M.
Auweter-Kurtz
,
M.
Fertig
,
W.
Fischer
,
J.-M.
Muylaert
,
S.
Pidan
,
M.
Schüssler
, and
U.
Trabandt
,
Eur. Space Agency SP
631
,
42
(
2006
), available at https://ui.adsabs.harvard.edu/abs/2006ESASP.631E..42H.
56.
Z.
Chen
,
V. M.
Donnelly
,
D. J.
Economou
,
L.
Chen
,
M.
Funk
, and
R.
Sundararajan
,
J. Vac. Sci. Technol. A
27
,
1159
(
2009
).
57.
D.
Qerimi
,
Radical Probe System for In-Situ Measurements of Radical Densities of Hydrogen, Oxygen and Nitrogen, Text
(
University of Illinois at Urbana-Champaign
, Urbane, IL,
2019
).
58.
G.
Roberson
,
M.
Roberto
,
J.
Verboncoeur
, and
P.
Verdonck
,
Braz. J. Phys.
37
,
457
(
2007
).
You do not currently have access to this content.