Thermal atomic layer etch (ALE), facilitating the removal of up to one monolayer of material per cycle, is growing in importance for thin-film processing. The number of available ALE processes is much smaller than for atomic layer deposition, its complementary growth process. Quantum chemical simulations are a key approach in the development of new thermal ALE processes, however, methodologies and workflows need to be developed. In this regard, the present paper reports a simulation-based approach toward the development of new thermal ALE processes using metallic cobalt as a test case. We demonstrate a predictive process discovery approach for ALE in which target volatile etch products and the corresponding gas phase reactants are chosen from the literature, an overall ALE cycle for each combination of reactant is investigated for thermochemical favorability, and the detailed mechanisms of the individual reaction steps in the proposed ALE processes are studied using density functional theory. From these results, we derive a temperature-pressure process window for each combination of reactants at typical reactant and product pressures allowing the selection of an ALE process window. For Co ALE, we investigated propene, butyne, silane, and trimethyl silane as a first pulse reactant and CO as the second pulse reactant. We propose propene and CO as the best combination of reactants for Co ALE. Propene adsorbs with sufficient strength to the target Co atom at temperatures below the CO decomposition temperature of 440 K, which results in the lowest energy etch species. This approach is equally relevant for the ALE process design of elemental, binary, and ternary materials.

1.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
2.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci. Technol.
4
,
N5041
(
2015
).
3.
S. M.
George
and
Y.
Lee
,
ACS Nano
10
,
4889
(
2016
).
4.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
5.
S. K.
Song
,
H.
Saare
, and
G. N.
Parsons
,
Chem. Mater.
31
,
4793
(
2019
).
7.
Y.
Lee
and
S. M.
George
,
ACS Nano
9
,
2061
(
2015
).
8.
Y.
Lee
,
J. W.
DuMont
, and
S. M.
George
,
ECS J. Solid State Sci. Technol.
4
,
N5013
(
2015
).
9.
Y.
Lee
,
J. W.
DuMont
, and
S. M.
George
,
J. Phys. Chem. C
119
,
25385
(
2015
).
10.
Y.
Lee
,
C.
Huffman
, and
S. M.
George
,
Chem. Mater.
28
,
7657
(
2016
).
11.
N. R.
Johnson
,
H.
Sun
,
K.
Sharma
, and
S. M.
George
,
J. Vac. Sci. Technol. A
34
,
050603
(
2016
).
12.
J. W.
DuMont
,
A. E.
Marquardt
,
A. M.
Cano
, and
S. M.
George
,
ACS Appl. Mater. Interfaces
9
,
10296
(
2017
).
13.
D. R.
Zywotko
and
S. M.
George
,
Chem. Mater.
29
,
1183
(
2017
).
14.
J.
Hennessy
,
C. S.
Moore
,
K.
Balasubramanian
,
A. D.
Jewell
,
K.
France
, and
S.
Nikzad
,
J. Vac. Sci. Technol. A
35
,
041512
(
2017
).
15.
J. W.
DuMont
and
S. M.
George
,
J. Chem. Phys.
146
,
052819
(
2017
).
16.
Y.
Lee
and
S. M.
George
,
Chem. Mater.
29
,
8202
(
2017
).
17.
Y.
Lee
and
S. M.
George
,
J. Vac. Sci. Technol. A
36
,
061504
(
2018
).
18.
Y.
Lee
and
S. M.
George
,
J. Phys. Chem. C
123
,
18455
(
2019
).
19.
R.
Rahman
,
E. C.
Mattson
,
J. P.
Klesko
,
A.
Dangerfield
,
S.
Rivillon-Amy
,
D. C.
Smith
,
D.
Hausmann
, and
Y. J.
Chabal
,
ACS Appl. Mater. Interfaces
10
,
31784
(
2018
).
20.
N. R.
Johnson
,
J. K.
Hite
,
M. A.
Mastro
,
C. R.
Eddy
, and
S. M.
George
,
Appl. Phys. Lett.
114
,
243103
(
2019
).
21.
K.
Shinoda
,
N.
Miyoshi
,
H.
Kobayashi
,
M.
Izawa
,
K.
Ishikawa
, and
M.
Hori
,
J. Phys. D: Appl. Phys.
52
,
475106
(
2019
).
22.
W.
Lu
,
Y.
Lee
,
J. C.
Gertsch
,
J. A.
Murdzek
,
A. S.
Cavanagh
,
L.
Kong
,
J. A.
del Alamo
, and
S. M.
George
,
Nano Lett.
19
,
5159
(
2019
).
23.
A.
Fischer
,
A.
Routzahn
,
Y.
Lee
,
T.
Lill
, and
S. M.
George
,
J. Vac. Sci. Technol. A
38
,
022603
(
2020
).
24.
N. R.
Johnson
and
S. M.
George
,
ACS Appl. Mater. Interfaces
9
,
34435
(
2017
).
25.
W.
Xie
,
P. C.
Lemaire
, and
G. N.
Parsons
,
ACS Appl. Mater. Interfaces
10
,
9147
(
2018
).
26.
W.
Xie
and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
38
,
022605
(
2020
).
27.
X.
Lin
,
M.
Chen
,
A.
Janotti
, and
R.
Opila
,
J. Vac. Sci. Technol. A
36
,
051401
(
2018
).
28.
M.
Konh
,
C.
He
,
X.
Lin
,
X.
Guo
,
V.
Pallem
,
R. L.
Opila
,
A. V.
Teplyakov
,
Z.
Wang
, and
B.
Yuan
,
J. Vac. Sci. Technol. A
37
,
021004
(
2019
).
29.
N.
Toyoda
and
A.
Ogawa
,
J. Phys. D: Appl. Phys.
50
,
184003
(
2017
).
30.
Y.
Gong
,
K.
Venkatraman
, and
R.
Akolkar
,
J. Electrochem. Soc.
165
,
D282
(
2018
).
31.
E.
Mohimi
,
X. I.
Chu
,
B. B.
Trinh
,
S.
Babar
,
G. S.
Girolami
, and
J. R.
Abelson
,
ECS J. Solid State Sci. Technol.
7
,
P491
(
2018
).
32.
A. I.
Abdulagatov
and
S. M.
George
,
Chem. Mater.
30
,
8465
(
2018
).
33.
K.
Ikeda
,
S.
Imai
, and
M.
Matsumura
,
Appl. Surf. Sci.
112
,
87
(
1997
).
34.
J.
Acharya
,
J.
Wilt
,
B.
Liu
, and
J.
Wu
,
ACS Appl. Mater. Interfaces
10
,
3112
(
2018
).
35.
D. M.
Hausmann
,
E.
Kim
,
J.
Becker
, and
R. G.
Gordon
,
Chem. Mater.
14
,
4350
(
2002
).
36.
K.-C.
Park
and
K.-B.
Kim
,
J. Electrochem. Soc.
142
,
3109
(
1995
).
37.
K.
Min
,
K.
Chun
, and
K.
Kim
,
J. Vac. Sci. Technol. B
14
,
3263
(
1996
).
38.
Y.
Zhao
and
G.
Lu
,
Phys. Rev. B
79
,
214104
(
2009
).
39.
C.
Auth
, et al., “A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects,” in 2017 IEEE International Electron Devices Meeting (IEDM) (IEEE, New York, 2017), pp. 29.1.1–29.1.4.
40.
J.
Kwon
,
M.
Saly
,
M. D.
Halls
,
R. K.
Kanjolia
, and
Y. J.
Chabal
,
Chem. Mater.
24
,
1025
(
2012
).
41.
H.-B.-R.
Lee
and
H.
Kim
,
Electrochem. Solid State Lett.
9
,
G323
(
2006
).
42.
H.-B.-R.
Lee
,
W.-H.
Kim
,
J. W.
Lee
,
J.-M.
Kim
,
K.
Heo
,
I. C.
Hwang
,
Y.
Park
,
S.
Hong
, and
H.
Kim
,
J. Electrochem. Soc.
157
,
D10
(
2010
).
43.
J. P.
Klesko
,
M. M.
Kerrigan
, and
C. H.
Winter
,
Chem. Mater.
28
,
700
(
2016
).
44.
B. S.
Lim
,
A.
Rahtu
, and
R. G.
Gordon
,
Nat. Mater.
2
,
749
(
2003
).
45.
M. M.
Kerrigan
,
J. P.
Klesko
,
S. M.
Rupich
,
C. L.
Dezelah
,
R. K.
Kanjolia
,
Y. J.
Chabal
, and
C. H.
Winter
,
J. Chem. Phys.
146
,
052813
(
2017
).
46.
J. K.-C.
Chen
,
T.
Kim
,
N. D.
Altieri
,
E.
Chen
, and
J. P.
Chang
,
J. Vac. Sci. Technol. A
35
,
031304
(
2017
).
47.
J.
Zhao
,
M.
Konh
, and
A.
Teplyakov
,
Appl. Surf. Sci.
455
,
438
(
2018
).
48.
L. P.
Méndez De Leo
,
L.
Pirolli
, and
A. V.
Teplyakov
,
J. Phys. Chem. B
110
,
14337
(
2006
).
49.
L.
Li-Jung
,
T.
Chih-Pin
,
C.-W.
Soong
,
J.-H.
Chen
,
S.-H.
Wang
, and
S.-H.
Chang
, “
Fluorine contamination control in semiconductor manufacturing process
,” U.S. patent application 20170352559 (2017). https://www.freepatentsonline.com/y2017/0352559.html.
50.
S.
Kondati Natarajan
and
S. D.
Elliott
,
Chem. Mater.
30
,
5912
(
2018
).
51.
S.
Kondati Natarajan
,
M.
Nolan
,
P.
Theofanis
,
C.
Mokhtarzadeh
, and
S. B.
Clendenning
,
ACS Appl. Mater. Interfaces
12
,
36670
(
2020
).
52.
R.
Mullins
,
S.
Kondati Natarajan
,
S. D.
Elliott
, and
M.
Nolan
,
Chem. Mater.
32
,
3414
(
2020
).
53.
R. C.
Longo
,
A.
Ranjan
, and
P. L. G.
Ventzek
,
ACS Appl. Nano Mater.
3
,
5189
(
2020
).
54.
A. H.
Basher
,
I.
Hamada
, and
S.
Hamaguchi
,
Jpn. J. Appl. Phys.
59
,
090905
(
2020
).
55.
A. H.
Basher
,
M.
Krstić
,
T.
Takeuchi
,
M.
Isobe
,
T.
Ito
,
M.
Kiuchi
,
K.
Karahashi
,
W.
Wenzel
, and
S.
Hamaguchi
,
J. Vac. Sci. Technol. A
38
,
022610
(
2020
).
56.
J.
Kwon
,
M.
Saly
,
M. D.
Halls
,
R. K.
Kanjolia
, and
Y. J.
Chabal
,
Chem. Mater.
24
,
1025
(
2012
).
57.
T.
Pugh
,
S. D.
Cosham
,
J. A.
Hamilton
,
A. J.
Kingsley
, and
A. L.
Johnson
,
Inorg. Chem.
52
,
13719
(
2013
).
58.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
59.
60.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
61.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
62.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
63.
G.
Henkelman
and
H.
Jonsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
64.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
65.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jonsson
,
Comput. Mater. Sci.
36
,
354
(
2006
).
66.
R. F.
Bader
,
Chem. Rev.
91
,
893
(
1991
).
67.
H.
Raebiger
,
S.
Lany
, and
A.
Zunger
,
Nature
453
,
763
(
2008
).
68.
M.
Xu
,
P.
Xiao
,
S.
Stauffer
,
J.
Song
,
G.
Henkelman
, and
J. B.
Goodenough
,
Chem. Mater.
26
,
3089
(
2014
).
69.
K.
Persson
, “Materials data on Co (SG:194) by materials project” (2016), see: https://materialsproject.org/materials/mp-54/; accessed 11 November 2019.
70.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
2004
).
71.
P.
Janthon
,
S.
Luo
,
S. M.
Kozlov
,
F.
Vines
,
J.
Limtrakul
,
D. G.
Truhlar
, and
F.
Illas
,
J. Chem. Theor. Comput.
10
,
3832
(
2014
).
72.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
(
2015
).
73.
“TURBOMOLE V6.2 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007” see: http://www.turbomole.com last; accessed 27 November 2019.
74.
D.
Nicholls
,
The Chemistry of Iron, Cobalt and Nickel: Comprehensive Inorganic Chemistry
(
Elsevier
,
New York
,
2013
), Vol. 24.
75.
G. K. K.
Gunasooriya
,
A. P.
van Bavel
,
H. P.
Kuipers
, and
M.
Saeys
,
Surf. Sci.
642
,
L6
(
2015
).
76.
R.
Gopalakrishnan
and
B.
Viswanathan
,
Surf. Technol.
23
,
173
(
1984
).
77.
C. J.
Weststrate
,
I. M.
Ciobîcǎ
,
J.
van de Loosdrecht
, and
J. W.
Niemantsverdriet
,
J. Phys. Chem. C
120
,
29210
(
2016
).
78.
L.
Nykänen
and
K.
Honkala
,
J. Phys. Chem. C
115
,
9578
(
2011
).
79.
K.-H.
Ernst
,
E.
Schwarz
, and
K.
Christmann
,
J. Chem. Phys.
101
,
5388
(
1994
).
80.
M.
Bridge
,
C.
Comrie
, and
R.
Lambert
,
J. Catal.
58
,
28
(
1979
).
81.
J. J.
Sims
,
C. A.
Ould Hamou
,
R.
Réocreux
,
C.
Michel
, and
J. B.
Giorgi
,
J. Phys. Chem. C
122
,
20279
(
2018
).
82.
See the supplementary material at http://dx.doi.org/10.1116/6.0000804 for S1: Bader charge analysis, S2: Co bulk and surface models, S3: Reaction energies without CO residue, S4: Proposed ALE cycle for butyne+CO, silane+CO and TMS+CO, and S5: MD and CI-NEB analysis of propene dissociation.

Supplementary Material

You do not currently have access to this content.