Atomic layer deposition (ALD) is a versatile technique to functionalize textile substrates due to its ability to create conformal films on the fibers’ surface. Photocatalytic activity and antibacterial activity of TiO2 and ZnO films deposited onto polyamide 66 fabrics were investigated. ALD coated fabrics were examined to eliminate Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria with ISO 20645 and AATCC 100 standard methods. Both materials were only slightly successful for the elimination of E. coli. However, ZnO films were more effective in killing S. aureus bacteria than TiO2 films independent of incubation conditions (i.e., under dark or ambient light). Deposited films were characterized using SEM, FTIR, UV-Vis, and XPS spectroscopy techniques. Furthermore, the samples’ photocatalytic activity was determined by measuring methylene blue degradation as a model organic molecule showing that ZnO films were better photocatalysts as deposited. The films’ antibacterial mechanism is mainly due to ions dissolving from the films into the bacterial solutions.

2.
B.
Kalanyan
,
C. J.
Oldham
,
W. J.
Sweet
, and
G. N.
Parsons
,
ACS Appl. Mater. Interfaces
5
,
5253
(
2013
).
3.
F.
Chen
 et al,
ACS Appl. Mater. Interfaces
8
,
5653
(
2016
).
4.
X.
Xiao
,
G.
Cao
,
F.
Chen
,
Y.
Tang
,
X.
Liu
, and
W.
Xu
,
Appl. Surf. Sci.
349
,
876
(
2015
).
5.
X.
Xiao
,
X.
Liu
,
F.
Chen
,
D.
Fang
,
C.
Zhang
,
L.
Xia
, and
W.
Xu
,
ACS Appl. Mater. Interfaces
7
,
21326
(
2015
).
7.
Y. W. H.
Wong
,
C. W. M.
Yuen
,
M. Y. S.
Leung
,
S. K. A.
Ku
, and
H. L. I.
Lam
,
Autex Res. J.
6
,
1
(
2006
), available at http://www.autexrj.com/articles/36/.
8.
A.
Fujishima
,
K.
Hashimoto
, and
T.
Watanabe
,
TiO2 Photocatalysis: Fundamentals and Applications
(
BKC Incorporated
,
Tokyo
,
1999
).
9.
C. B.
Ong
,
L. Y.
Ng
, and
A. W.
Mohammad
,
Renew. Sustain. Energy Rev.
81
,
536
(
2018
).
10.
M.
Mishra
and
D.-M.
Chun
,
Appl. Catal. A
498
,
126
(
2015
).
11.
X.
She
 et al,
Adv. Energy Mater.
7
,
1700025
(
2017
).
12.
L.
Zhu
,
H.
Li
,
Z.
Liu
,
P.
Xia
,
Y.
Xie
, and
D.
Xiong
,
J. Phys. Chem. C
122
,
9531
(
2018
).
13.
K.
Karthik
,
S.
Dhanuskodi
,
C.
Gobinath
,
S.
Prabukumar
, and
S.
Sivaramakrishnan
,
J. Photochem. Photobiol. B
190
,
8
(
2019
).
14.
E. F. C.
Chaúque
,
A. A.
Adelodun
,
L. N.
Dlamini
,
C. J.
Greyling
,
S. C.
Ray
, and
J. C.
Ngila
,
Mater. Chem. Phys.
192
,
108
(
2017
).
15.
X.
Li
,
X.
Li
,
B.
Zhu
,
J.
Wang
,
H.
Lan
, and
X.
Chen
,
RSC Adv.
7
,
30956
(
2017
).
16.
O.
Sacco
,
V.
Vaiano
,
L.
Rizzo
, and
D.
Sannino
,
J. Cleaner Prod.
175
,
38
(
2018
).
17.
L.
Armelao
 et al,
Nanotechnology
18
,
375709
(
2007
).
18.
Z.
Batur
and
H. I.
Akyildiz
,
J. Polytech.
24
,
121
(
2021
).
19.
M.
Bideau
,
B.
Claudel
,
C.
Dubien
,
L.
Faure
, and
H.
Kazouan
,
J. Photochem. Photobiol. A
91
,
137
(
1995
).
20.
B. J.
Oneill
 et al,
ACS Catal.
5
,
1804
(
2015
).
21.
H.
Feng
,
J. W.
Elam
,
J. A.
Libera
,
W.
Setthapun
, and
P. C.
Stair
,
Chem. Mater.
22
,
3133
(
2010
).
22.
W.
Wu
,
K.
Ding
,
J.
Liu
,
T.
Drake
,
P.
Stair
, and
E.
Weitz
,
J. Phys. Chem. C
121
,
26794
(
2017
).
23.
X.
Jiang
,
T. M.
Gür
,
F. B.
Prinz
, and
S. F.
Bent
,
Chem. Mater.
22
,
3024
(
2010
).
24.
I.
Zyulkov
,
M.
Krishtab
,
S.
De Gendt
, and
S.
Armini
,
ACS Appl. Mater. Interfaces
9
,
31031
(
2017
).
25.
I.
Levchuk
,
C.
Guillard
,
F.
Dappozze
,
S.
Parola
,
D.
Leonard
, and
M.
Sillanpää
,
J. Photochem. Photobiol. A
328
,
16
(
2016
).
26.
N. K. R.
Eswar
,
S. A.
Singh
, and
J.
Heo
,
J. Mater. Chem. A
7
,
17703
(
2019
).
27.
V.
Scuderi
,
M. A.
Buccheri
,
G.
Impellizzeri
,
A.
Di Mauro
,
G.
Rappazzo
,
K.
Bergum
,
B. G.
Svensson
, and
V.
Privitera
,
Mater. Sci. Semicond. Process.
42
,
32
(
2016
).
28.
M. L.
Kääriäinen
,
C. K.
Weiss
,
S.
Ritz
,
S.
Pütz
,
D. C.
Cameron
,
V.
Mailänder
, and
K.
Landfester
,
Appl. Surf. Sci.
287
,
375
(
2013
).
29.
K. H.
Park
,
G. D.
Han
,
K. C.
Neoh
,
T. S.
Kim
,
J. H.
Shim
, and
H. D.
Park
,
Chem. Eng. J.
328
,
988
(
2017
).
30.
R. U.
Puvvada
,
J. P.
Wooding
,
M. C.
Bellavia
,
E. K.
McGuinness
,
T. A.
Sulchek
, and
M. D.
Losego
,
JOM
71
,
178
(
2019
).
31.
Y.
Sun
,
R. P.
Padbury
,
H. I.
Akyildiz
,
M. P.
Goertz
,
J. A.
Palmer
, and
J. S.
Jur
,
Chem. Vap. Depos.
19
,
134
(
2013
).
32.
M. R.
Jung
 et al,
Mar. Pollut. Bull.
127
,
704
(
2018
).
33.
N.
Vasanthan
and
D. R.
Salem
,
Mater. Res. Innov.
4
,
155
(
2001
).
34.
Y.
Ma
,
T.
Zhou
,
G.
Su
,
Y.
Li
, and
A.
Zhang
,
RSC Adv.
6
,
87405
(
2016
).
35.
R. P.
Padbury
and
J. S.
Jur
,
J. Vac. Sci. Technol. A
32
,
041602
(
2014
).
36.
H. I.
Akyildiz
,
M.
Lo
,
E.
Dillon
,
A. T.
Roberts
,
H. O.
Everitt
, and
J. S.
Jur
,
J. Mater. Res.
29
,
2817
(
2014
).
37.
H. I.
Akyildiz
,
R. P.
Padbury
,
G. N.
Parsons
, and
J. S.
Jur
,
Langmuir
28
,
15697
(
2012
).
38.
H. I.
Akyildiz
and
J. S.
Jur
,
J. Vac. Sci. Technol. A
33
,
020604
(
2015
).
39.
H. I.
Akyildiz
,
M. B. M.
Mousa
, and
J. S.
Jur
,
J. Appl. Phys.
117
,
045301
(
2015
).
40.
B.
Gong
,
Q.
Peng
,
J. S.
Jur
,
C. K.
Devine
,
K.
Lee
, and
G. N.
Parsons
,
Chem. Mater.
23
,
3476
(
2011
).
41.
H.
Uribe-Vargas
,
J.
Molina-Reyes
,
A.
Romero-Morán
,
E.
Ortega
, and
A.
Ponce
,
J. Mater. Sci. Mater. Electron.
29
,
15761
(
2018
).
42.
S. I.
Boyadjiev
,
V.
Georgieva
,
R.
Yordanov
,
Z.
Raicheva
, and
I. M.
Szilágyi
,
Appl. Surf. Sci.
387
,
1230
(
2016
).
43.
B.-Z.
Li
,
Q.
Xie
,
Y.-L.
Jiang
,
C.
Detavernier
,
D.
Deduytsche
,
R. L.
Van Meirhaeghe
,
G.-P.
Ru
, and
X.-P.
Qu
,
Artic. J. Appl. Phys.
102
,
083521
(
2007
).
44.
G. N.
Parsons
 et al,
Coord. Chem. Rev.
257
,
3323
(
2013
).
45.
F. R.
Oliveira
,
A.
Zille
, and
A. P.
Souto
,
Appl. Surf. Sci.
293
,
177
(
2014
).
46.
S.
Begum
,
J.
Wu
,
C. M.
Takawira
, and
J.
Wang
,
J. Eng. Fiber. Fabr.
11
,
64
(
2016
).
47.
J. C.
Sánchez-López
,
D.
Martínez-Martínez
,
M. D.
Abad
, and
A.
Fernández
,
Surf. Coat. Technol.
204
,
947
(
2009
).
48.
K. E.
Gregorczyk
,
D. F.
Pickup
,
M. G.
Sanz
,
I. A.
Irakulis
,
C.
Rogero
, and
M.
Knez
,
Chem. Mater.
27
,
181
(
2015
).
49.
S.
Estrada-Flores
,
A.
Martínez-Luévanos
,
P.
Bartolo-Pérez
,
L. A.
García-Cerda
,
T. E.
Flores-Guia
, and
E. N.
Aguilera-González
,
RSC Adv.
8
,
41818
(
2018
).
50.
R.
Methaapanon
and
S. F.
Bent
,
J. Phys. Chem. C
114
,
10498
(
2010
).
51.
A. T.
Kuvarega
,
R. W. M.
Krause
, and
B. B.
Mamba
,
J. Phys. Chem. C
115
,
22110
(
2011
).
52.
I. M.
Szilágyi
 et al,
Chem. Vap. Deposition
19
,
149
(
2013
).
53.
R.
Al-Gaashani
,
S.
Radiman
,
A. R.
Daud
,
N.
Tabet
, and
Y.
Al-Douri
,
Ceram. Int.
39
,
2283
(
2013
).
54.
K.
Tapily
,
D.
Gu
,
H.
Baumgart
,
G.
Namkoong
,
D.
Stegall
, and
A. A.
Elmustafa
,
Semicond. Sci. Technol.
26
,
115005
(
2011
).
55.
I. A.
Kowalik
,
E.
Guziewicz
,
K.
Kopalko
,
S.
Yatsunenko
,
A.
Wójcik-Głodowska
,
M.
Godlewski
,
P.
Dłuzewski
,
E.
Łusakowska
, and
W.
Paszkowicz
,
J. Cryst. Growth
311
,
1096
(
2009
).
56.
J.
Aarik
,
J.
Karlis
,
H.
Mändar
,
T.
Uustare
, and
V.
Sammelselg
,
Appl. Surf. Sci.
181
,
339
(
2001
).
57.
S.
Jeon
,
S.
Bang
,
S.
Lee
,
S.
Kwon
,
W.
Jeong
,
H.
Jeon
,
H. J.
Chang
, and
H.-H.
Park
,
J. Electrochem. Soc.
155
,
H738
(
2008
).
58.
See supplementary material at https://doi.org/10.1116/6.0000761 for detailed description of the antibacterial test procedures and methylene blue degradation test results in dark medium.

Supplementary Material

You do not currently have access to this content.