This is a survey of known gold-containing chemical vapor deposition (CVD) and atomic layer deposition (ALD) precursors with a focus on collecting their volatilization and decomposition data. These data were applied to a figure of merit (σ) developed to easily assess the thermal characteristics (“volatilization temperature” and the onset of decomposition]) important in the initial assessment of molecules as potential ALD precursors. Of the 46 compounds that were identified, 23 had sufficient thermal data reported in the literature to determine a σ value. The two known gold ALD precursors (15, σ = 104 and 22, σ = 44) were both shown to be in a cluster of excellent precursors. They were each the best in their families of precursors, measured by their σ and their onset of volatility. It was also found that many potentially excellent gold ALD precursors had gold in the +3 oxidation state. Some gold(I) compounds were identified as having good figures of merit (28, σ = 78, 29, σ = 32, 36, σ = 31), but 28 and 29 were found to undergo a reductive elimination reaction at growing gold surfaces, which is a common CVD deposition route for gold(I) compounds. β-diketonates and β-ketoiminates of gold were the most encouraging family of compounds, with σ values of greater than 50. This family contained the precursor with the highest figure of merit (9, σ = 212). These compounds are difficult to make in high yield, but an alternate synthetic route that was identified during this survey might serve to make this class of gold compound competitive as a precursor.

1.
M. B. E.
Griffiths
,
Z. S.
Dubrawski
,
G.
Bačić
,
J. D.
Masuda
,
A.
Japanhuge
,
T.
Zeng
, and
S. T.
Barry
,
Eur. J. Inorg. Chem.
46
,
4927
(
2019
).
2.
G. V.
Kunte
,
S. A.
Shivashankar
, and
A. M.
Umarji
,
Meas. Sci. Technol.
19
,
025704
(
2008
).
3.
T. V.
Basova
,
A.
Hassan
, and
N. B.
Morozova
,
Coord. Chem. Rev.
380
,
58
(
2019
).
4.
See https://www.chemcraftprog.com for Chemcraft—Graphical software for visualization of quantum chemistry computations.
5.
M. B. E.
Griffiths
, “
Advanced precursor design for atomic layer deposition and chemical vapour deposition of gold metal
,”
Ph.D. dissertation
(
Carleton University
,
2020
).
6.
A. E.
Turgambaeva
,
G.
Zharkova
,
P.
Semyannikov
,
V. V.
Krisyuk
,
T.
Koretskaya
,
S.
Trubin
,
B.
Kuchumov
, and
I.
Igumenov
,
Gold Bull.
44
,
177
(
2011
).
7.
H.
Uchida
,
N.
Saitou
,
M.
Satou
,
M.
Tebakari
, and
K.
Ogi
,
MRS Proc.
334
,
293
(
1993
).
8.
N. G.
Nikitenko
and
A. F.
Shestakov
,
Kinet. Catal.
55
,
401
(
2014
).
9.
T. H.
Baum
,
J. Electrochem. Soc.
134
,
2616
(
1987
).
10.
R. G.
Parkhomenko
,
A. I.
Plekhanov
,
A. S.
Kuchyanov
,
S. V.
Trubin
,
B. M.
Kuchumov
, and
I. K.
Igumenov
,
Surf. Coat. Technol.
230
,
279
(
2013
).
11.
H.
Uchida
,
N.
Saitou
,
M.
Sato
,
M.
Take
, and
K.
Ogi
, JPH06100570 (A) (1994).
12.
N.
Saitou
,
H.
Uchida
, and
K.
Ogi
, JPH06157546 (A) (1994).
13.
H.
Schmidbaur
,
O.
Gasser
,
C.
Krüger
, and
J. C.
Sekutowski
,
Chem. Ber.
110
,
3517
(
1977
).
14.
H.
Uchida
,
N.
Saitou
,
M.
Sato
,
M.
Take
, and
K.
Ogi
, JPH06158322 (A) (1994).
15.
H.
Schmidbaur
,
H.-J.
Füller
,
V.
Bejenke
,
A.
Franck
, and
G.
Huttner
,
Chem. Ber.
110
,
3536
(
1977
).
16.
T. H.
Baum
,
P. J.
Brock
, and
D. J.
Dawson
, US5023360 (A), (1991).
17.
M.
Mäkelä
,
T.
Hatanpää
,
K.
Mizohata
,
J.
Räisänen
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
29
,
6130
(
2017
).
18.
A. E.
Turgambaeva
,
R. G.
Parkhomenko
,
V. V.
Krisyuk
, and
I. K.
Igumenov
,
J. Coord. Chem.
68
,
1878
(
2015
).
19.
R. G.
Parkhomenko
,
S. V.
Trubin
,
A. E.
Turgambaeva
, and
I. K.
Igumenov
,
J. Cryst. Growth
414
,
143
(
2015
).
20.
R.
Parkhomenko
,
A.
Alexeyev
,
N.
Morozova
, and
I.
Igumenov
,
J. Coord. Chem.
65
,
3227
(
2012
).
21.
A. A.
Bessonov
,
N. B.
Morozova
,
N. V.
Gelfond
,
P. P.
Semyannikov
,
I. A.
Baidina
,
S. V.
Trubin
,
Y. V.
Shevtsov
, and
I. K.
Igumenov
,
Synthesis J. Organomet. Chem.
693
,
2572
(
2008
).
22.
A. A.
Bessonov
,
N. B.
Morozova
,
P. P.
Semyannikov
,
S. V.
Trubin
,
N. V.
Gelfond
, and
I. K.
Igumenov
,
Russ. J. Coord. Chem.
34
,
186
(
2008
).
23.
H. J. A.
Blaauw
,
R. J. F.
Nivard
, and
G. J. M.
Van Der Kerk
,
J. Organomet. Chem.
2
,
236
(
1964
).
24.
D. D.
Heinrich
,
J. C.
Wang
, and
J. P.
Fackler
, Jr.
,
Acta Crystallogr. Sect. C Cryst. Struct. Commun.
46
,
1444
(
1990
).
25.
A. A.
Bessonov
,
N. B.
Morozova
,
N. V.
Gelfond
,
P. P.
Semyannikov
,
S. V.
Trubin
,
Y. V.
Shevtsov
,
Y. V.
Shubin
, and
I. K.
Igumenov
,
Surf. Coat. Technol.
201
,
9099
(
2007
).
26.
R. G.
Parkhomenko
,
N. B.
Morozova
,
G. I.
Zharkova
,
Y. V.
Shubin
,
S. V.
Trubin
,
V. V.
Kriventsov
,
B. M.
Kuchumov
,
T. P.
Koretskaya
, and
I. K.
Igumenov
,
Chem. Vap. Depos.
18
,
336
(
2012
).
27.
H.
Schmidbaur
and
M.
Bergfeld
,
Inorg. Chem.
5
,
2069
(
1966
).
28.
H.
Uchida
,
N.
Saitou
,
M.
Sato
,
M.
Take
, and
K.
Ogi
, JPH06101046 (A) (1994).
29.
J.
Messelhäuser
,
E. B.
Flint
, and
H.
Suhr
,
Appl. Surf. Sci.
54
,
64
(
1992
).
30.
M. B. E.
Griffiths
,
P. J.
Pallister
,
D. J.
Mandia
, and
S. T.
Barry
,
Chem. Mater.
28
,
44
(
2016
).
31.
M.
Van Daele
 et al,
ACS Appl. Mater. Interfaces
11
,
36824
(
2019
).
32.
F. S. M.
Hashemi
,
F.
Grillo
,
V. R.
Ravikumar
,
D.
Benz
,
A.
Shekhar
,
M. B. E.
Griffiths
,
S. T.
Barry
, and
J. R.
van Ommen
,
Nanoscale
12
,
9005
(
2020
).
33.
M.
Van Daele
,
M. B. E.
Griffiths
,
M. M.
Minjauw
,
S. T.
Barry
,
C.
Detavernier
, and
J.
Dendooven
,
Phys. Chem. Chem. Phys.
22
,
11903
(
2020
).
34.
T. J. J.
Whitehorne
, “
Synthesis, structure and thermochemistry of selected group 11 and 12 metals
,”
M.Sc. dissertation
(
Carleton University
,
2009
).
35.
J. P.
Coyle
,
A.
Kurek
,
P. J.
Pallister
,
E. R.
Sirianni
,
G. P. A.
Yap
, and
S. T.
Barry
,
Chem. Commun.
48
,
10440
(
2012
).
36.
T. J. J.
Whitehorne
,
J. P.
Coyle
,
A.
Mahmood
,
W. H.
Monillas
,
G. P. A.
Yap
, and
S. T.
Barry
,
Eur. J. Inorg. Chem.
21
,
3240
(
2011
).
37.
W.
Zhou
,
D. J.
Mandia
,
M. B. E.
Griffiths
,
A.
Bialiayeu
,
Y.
Zhang
,
P. G.
Gordon
,
S. T.
Barry
, and
J.
Albert
,
Opt. Express
21
,
245
(
2013
).
38.
J. P.
Coyle
,
P. G.
Gordon
,
A. P.
Wells
,
D. J.
Mandia
,
E. R.
Sirianni
,
G. P. A.
Yap
, and
S. T.
Barry
,
Chem. Mater.
25
,
4566
(
2013
).
39.
W.
Zhou
,
D. J.
Mandia
,
M. B. E.
Griffiths
,
S. T.
Barry
, and
J.
Albert
,
J. Phys. Chem. C
118
,
670
(
2014
).
40.
L.
Tong
,
L. M.
Davis
,
X.
Gong
,
J.
Feng
,
E. S.
Beh
, and
R. G.
Gordon
,
Dalton Trans.
48
,
6709
(
2019
).
41.
H.
Schmidbaur
and
A.
Shiotani
,
J. Am. Chem. Soc.
92
,
7003
(
1970
).
42.
M. B. E.
Griffiths
 et al,
Chem. Mater.
27
,
6116
(
2015
).
43.
M.
Mäkelä
,
T.
Hatanpää
,
M.
Ritala
,
M.
Leskelä
,
K.
Mizohata
,
K.
Meinander
, and
J.
Räisänen
,
J. Vac. Sci. Technol. A
35
,
01B112
(
2017
).
44.
T.
Weidner
,
J. E.
Baio
,
A.
Mundstock
,
C.
Große
,
S.
Karthäuser
,
C.
Bruhn
, and
U.
Siemeling
,
Aust. J. Chem.
64
,
1177
(
2011
).
45.
C. M.
Crudden
 et al,
Nat. Chem.
6
,
409
(
2014
).
46.
E.
Ahvenniemi
 et al,
J. Vac. Sci. Technol. A
35
,
010801
(
2017
).
47.
W. G.
Carden
,
J.
Pedziwiatr
,
K. A.
Abboud
, and
L.
McElwee-White
,
ACS Appl. Mater. Interfaces
9
,
40998
(
2017
).
48.
R. W. Y.
Man
,
C. H.
Li
,
M. W. A.
MacLean
,
O. V.
Zenkina
,
M. T.
Zamora
,
L. N.
Saunders
,
A.
Rousina-Webb
,
M.
Nambo
, and
C. M.
Crudden
,
J. Am. Chem. Soc.
140
,
1576
(
2018
).
49.
S. O.
Colgate
,
G. J.
Palenik
,
V. E.
House
, and
D. W.
Schoenfeld
,
J. Vac. Sci. Technol. A
8
,
1411
(
1990
).
50.
F.
Jansen
and
T.
Kruck
,
Adv. Mater.
7
,
297
(
1995
).
51.
H.
Schmidbaur
and
R.
Franke
,
Chem. Ber.
105
,
2985
(
1972
).
52.
D.
Blessmann
,
A.
Gräfe
,
R.
Heinen
,
F.
Jansen
,
T.
Kruck
, and
C.
Terfloth
,
Mater. Sci. Eng. B
17
,
104
(
1993
).
53.
S.
Kandeepan
,
J. A.
Paquette
,
J. B.
Gilroy
, and
S.
Mittler
,
Chem. Vap. Depos.
21
,
275
(
2015
).
54.
D. W.
Allen
and
J.
Haigh
,
Appl. Organomet. Chem.
9
,
83
(
1995
).
55.
M. M.
Banaszak Holl
,
P. F.
Seidler
,
S. P.
Kowalczyk
, and
F. R.
McFeely
,
Appl. Phys. Lett.
62
,
1475
(
1993
).
56.
J.
Kouvetakis
,
R.
Sharma
,
B. L.
Ramakrisna
,
J.
Drucker
, and
P.
Seidler
,
MRS Proc.
388
,
323
(
1995
).
57.
R. J.
Puddephatt
and
I.
Treurnicht
,
J. Organomet. Chem.
319
,
129
(
1987
).
58.
R. J.
Puddephatt
and
I.
Treurnicht
, U.S. patent 4,714,627 (22 December 1987).
59.
N. H.
Dryden
,
J. G.
Shapter
,
L. L.
Coatsworth
,
P. R.
Norton
, and
R. J.
Puddephatt
,
Chem. Mater.
4
,
979
(
1992
).
60.
A.
Kadri
, “
Fluorination stability and potential carbene surface passivation of gold precursors for atomic layer deposition
,”
B.Sc. dissertation
(
Carleton University
,
2020
).
61.
M.
Blaya
,
D.
Bautista
,
J.
Gil-Rubio
, and
J.
Vicente
,
Organometallics
33
,
6358
(
2014
).
62.
A.
Pérez-Bitrián
,
M.
Baya
,
J. M.
Casas
,
L. R.
Falvello
,
A.
Martín
, and
A. B.
Menjón
,
Chem. Eur. J.
23
,
14918
(
2017
).
63.
See supplementary material at https://doi.org/10.1116/6.0000707 for experiments and TGAs of unreported compounds.

Supplementary Material

You do not currently have access to this content.